Advertisement

Purification of Complement Components, Regulators, and Receptors by Classical Methods

  • Carmen W. van den Berg
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 150)

Abstract

The aim of this chapter is to describe methods for purification of the individual complement (C) components using classical chromatography methods available in most biochemistry laboratories. None of these methods require the large amounts of specific antibodies needed for the popular and rapid immunoaffinity methods to be described in  Chapter 3. A further advantage of classical chromatography is that the methods described in this chapter for human C can easily be adapted for purification of C components of other species. Indeed, some of the methods described here were originally developed for the purification of animal components, but proved also to be suitable for human components. One precautionary note when adapting methods to C components of another species is that there is occasionally species incompatibility in that some components will not function in combination with components of another species. Functional assays may, therefore, require modification. It should also be noted that antisera and monoclonal antibodies against a C component frequently do not crossreact with that component from other species.

Keywords

Functional Assay Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid Positive Fraction Phenyl Methyl Sulfonyl Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hammer C. H., Wirtz G. H., Renfer L., Gresham H. D., and Tack B. F. (1981) Large-scale isolation of functionally active components of the human-complement system. J. Biol. Chem. 256, 3995–4006.PubMedGoogle Scholar
  2. 2.
    Harrison R. A. and Lachmann P. J. (1996) Complement and complement receptors, in Weir’s Handbook of Experimental Immunology, 5th ed. (W. Herzenberg L.A, D. M. HerzenbergL. A., and Blackwell C., eds.), Blackwell Science, vol. 2, pp. 74.1–79.11.Google Scholar
  3. 3.
    Wing M. G., Seilly D. J., Bridgman D. J., and Harrison R. A. (1993) Rapid isolation and biochemical-characterization of ratC 1 andC1q. Mol. Immunol. 30, 433–440.PubMedCrossRefGoogle Scholar
  4. 4.
    Stemmer F. and Loos M. (1984) Purification and characterization of human, guinea-pig and mouse Clq by fast protein liquid-chromatography (FPLC). J. Immunol. Meth. 74, 9–16.CrossRefGoogle Scholar
  5. 5.
    Peitsch M. C., Kovacsovics T. J., and Isliker H. (1988) A rapid and efficient method for the purification of the complement subcomponents C1r and C1s in zymogen form using fast protein chromatography. J. Immunol. Meth. 108, 265–269.CrossRefGoogle Scholar
  6. 6.
    Neoh S. H., Gordon T. P., and Roberts Thomson P. J. (1984) A simple one-step procedure for preparation of C1-deficient human-serum. J. Immunol. Meth. 69, 277–280.CrossRefGoogle Scholar
  7. 7.
    Tan S. M., Chung M. C. M., Kon O. L., Thiel S., Lee S. H., and Lu J. H. (1996) Improvements on the purification of mannan-binding lectin and demonstration of its Ca2+-independent association with a C1s-like serine protease. Biochem. J. 319, 329–332.PubMedGoogle Scholar
  8. 8.
    Hessing M., Paardekooper J., and Hack C. E. (1993) Separation of different forms of the 4th component of human-complement by fast protein liquidchromatography. J. Immunol. Meth. 157, 39–48.CrossRefGoogle Scholar
  9. 9.
    Kerr M. A. and Gagnon J. (1982) The purification and properties of the 2nd component of guinea-pig complement. Biochem. J. 205, 59–67.PubMedGoogle Scholar
  10. 10.
    Ling M., Piddlesden S. J., and Morgan B.P. (1995) A component of the medicinal herb Ephedra blocks activation in the classical and alternative pathways of complement. Clin. Exper. Immunol. 102, 582–588.CrossRefGoogle Scholar
  11. 11.
    Tack B. F. and Prahl J. W. (1976) Third component of human complement: purification from plasma and physicochemical characterization. Biochem. 15, 4513–4521.CrossRefGoogle Scholar
  12. 12.
    van den Berg C. W., van Dijk H., and Capel P. J. A. (1989) Rapid isolation and characterization of native mouse complement component-C3 and component-C5. J. Immunol. Meth. 122, 73–78.CrossRefGoogle Scholar
  13. 13.
    Sanchez-Corral P., Anton L. C., Alcolea J. M., Marques G., Sanchez A., and Vivanco F. (1989) Separation of active and inactive forms of the third component of human complement, C3, by fast flow liquid chromatography (FPLC). J. Immunol. Meth. 122, 105–113.CrossRefGoogle Scholar
  14. 14.
    Jessen T. E., Barkholt V., and Welinder K. G. (1983) A simple alternative pathway for hemolytic assay of human-complement component-C3 using methy-lamine-treated plasma. J. Immunol. Meth. 60, 89–100.CrossRefGoogle Scholar
  15. 15.
    Gitlin J. D., Rosen F. S., and Lachmann P. J. (1975) The mechanism of action of the C3b inactivator (conglutinogen-activating factor) on its naturally occurring substrate, the major fragment of the third component of complement (C3b). J. Exper. Med. 141, 1221–1226.CrossRefGoogle Scholar
  16. 16.
    Davis A. E. and Harrison R. A. (1982) Structural characterization of factor-I mediated cleavage of the 3rd component of complement. Biochem. 21, 5745–5749.CrossRefGoogle Scholar
  17. 17.
    Lachmann P. J., Pangburn M. K., and Oldroyd R. G. (1982) Breakdown of C3 after complement activation—identification of a new fragment, C3g, using monoclonal-antibodies. J. Exper. Med. 156, 205–216.CrossRefGoogle Scholar
  18. 18.
    Davis A. E., Harrison R. A., and Lachmann P. J. (1984) Physiologic inactivation of fluid phase C3b—isolation and structural-analysis of C3c, C3d,g (α-2d), and C3g. J. Immunol. 132, 1960–1966.PubMedGoogle Scholar
  19. 19.
    Williams S. C. and Sim R. B. (1993) Dye-ligand affinity purification of humancomplement factor-B and beta-2 glycoprotein-I. J. Immunol. Meth. 157, 25–30.CrossRefGoogle Scholar
  20. 20.
    Johnson D. M. A., Gagnon J., and Reid K. B. M. (1980) FactorD of the alternative pathway of human complement. Purification, alignment and N-terminal amino acid sequences of the major cyanogen bromide fragments, and localization of the serine residue at th active site. Biochem. J. 187, 863–874.PubMedGoogle Scholar
  21. 21.
    Gotze O. and Muller-Eberhard H. J. (1974) The role of properdin in the alternative pathway of complement activation. J. Exper. Med. 139, 44–57.CrossRefGoogle Scholar
  22. 22.
    Farries T. C., Finch J. T., Lachmann P. J., and Harrison R. A. (1987) Resolution and analysis of ∝native’ and ∝activated’ properdin. Biochem. J. 243, 507–517.PubMedGoogle Scholar
  23. 23.
    Pangburn M. K. (1989) Analysis of the natural polymeric forms of human properdin and their functions in complement activation. J. Immunol. 142, 202–207.PubMedGoogle Scholar
  24. 24.
    Vogel C. W. and Muller-Eberhard H. J. (1984) Cobra venom factor—improved method for purification and biochemical-characterization. J. Immunol. Meth. 73, 203–220.CrossRefGoogle Scholar
  25. 25.
    Vogt W. (1982) Factors in cobra venoms affecting the complement system. Toxicon 20, 299–303.PubMedCrossRefGoogle Scholar
  26. 26.
    Podack E. R., Kolb W. P., and Muller-Eberhard H. J. (1976) Purification of the sixth and seventh component of human complement without loss of hemolytic activity. J. Immunol. 116, 263–269.PubMedGoogle Scholar
  27. 27.
    Jones J., Laffafian I., and Morgan B. P. (1990) Purification of C8 and C9 from rat serum. Compl. Inflam. 7, 42–51.Google Scholar
  28. 28.
    Hugli T. E., Gerard C., Kawahara M., Scheetz M. E., Barton R., Briggs S., Koppel G., and Russell S. (1981) Isolation of three separate anaphylatoxins from complement-activated human serum. Mol. Cellular Biochem. 41, 59–66.CrossRefGoogle Scholar
  29. 29.
    van den Berg C. W., Aerts P. C., and van Dijk H. (1992) C1-inhibitor prevents PEG fractionation-induced, EDTA-resistant activation of mouse complement. Mol. Immunol. 29, 363–369.PubMedCrossRefGoogle Scholar
  30. 30.
    Burge J., Nicholson-Weller A.,and Austen K. F. (1981) Isolation of C4-binding protein from guinea-pig plasma and demonstration of its function as a control protein of the classical complement pathway C3 convertase. J. Immunol. 126, 232–235.PubMedGoogle Scholar
  31. 31.
    Crossley L. G., and Porter R. R. (1980) Purification of the human complement control protein C3b inactivator. Biochem. J. 191, 173–182.PubMedGoogle Scholar
  32. 32.
    Sim R. B. and Discipio R. G. (1982) Purification and structural studies on the complement-system control protein beta-1h (Factor-H). Biochem. J. 205, 285–293.PubMedGoogle Scholar
  33. 33.
    Dahlback B. and Podack E. R. (1985) Characterization of human S-protein, an inhibitor of the membrane attack complex of complement—demonstration of a free reactive thiol-group. Biochem. 24, 2368–2374.CrossRefGoogle Scholar
  34. 34.
    Jenne D. E. and Tschopp J. (1992) Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem. Sci. 17, 154–159.PubMedCrossRefGoogle Scholar
  35. 35.
    Seya T., Turner J. R., and Atkinson J. P. (1986) Purification and characterization of a membrane-protein (gp45–70) that is a cofactor for cleavage of C3b and C4b. J. Exper. Med. 163, 837–855.CrossRefGoogle Scholar
  36. 36.
    Nicholson-Weller A., Burge J., Fearon D. T., Weller P. F., and Austen K. F. (1982) Isolation of a human erythrocyte membrane glycoprotein with decayaccelerating activity for C3 convertases of the complement system. J. Immunol. 129, 184–189.PubMedGoogle Scholar
  37. 37.
    van den Berg C. W., Harrison R. A., and Morgan B. P. (1993) The sheep analog of human CD59— purification and characterization of its complement inhibitory activity. Immunol. 78, 349–357.Google Scholar
  38. 38.
    van den Berg C. W. and Morgan B. P. (1994) Complement-inhibiting activities of human CD59 and analogs from rat, sheep, and pig are not homologously restricted. J. Immunol. 152, 4095–4101.PubMedGoogle Scholar
  39. 39.
    van den Berg C. W., Harrison R. A., and Morgan B. P. (1995) A rapid method for the isolation of analogs of human CD59 by preparative SDS-Page—application to pig CD59. J. Immunol. Meth. 179, 223–231.CrossRefGoogle Scholar
  40. 40.
    Malhotra R. and Sim R. B. (1989) Chemical and hydrodynamic characterization of the human-leukocyte receptor for complement subcomponent C1q. Biochem. J. 262, 625–631.PubMedGoogle Scholar
  41. 41.
    Guan E., Burgess W. H., Robinson S. L., Goodman E. B., McTigue K. J., and Tenner A. J. (1991) Phagocytic cell molecules that bind the collagen-like region of C1q—involvement in the C1q-mediated enhancement of phagocytosis. J. Biol. Chem. 266, 20,345–20,355.PubMedGoogle Scholar
  42. 42.
    Peerschke E. I. B., Reid K. B. M., and Ghebrehiwet B. (1994) Identification of a novel 33-kDa C1q-binding site on human blood—platelets. J. Immunol. 152, 5896–5901.PubMedGoogle Scholar
  43. 43.
    Malhotra R. (1993) Collectin receptor (C1q receptor): structure and function. Behring Inst. Mitteilungen. 254–261.Google Scholar
  44. 44.
    Ghebrehiwet B., Silvestri L., and McDevitt C. (1984) Identification of the Raji cell membrane-derived Clq inhibitor as a receptor for human Clq—purification and immunochemical characterization. J. Exper. Med. 160, 1375–1389.CrossRefGoogle Scholar
  45. 45.
    Ghebrehiwet B., Lim B. L., Peerschke E. I. B., Willis A. C., and Reid K. B. M. (1994) Isolation, cDNA cloning, and overexpression of a 33-Kd cell-surface glycoprotein that binds to the globular heads of C1q. J. Exper. Med. 179, 1809–1821.CrossRefGoogle Scholar
  46. 46.
    Rollins T. E., Siciliano S., and Springer M. S. (1988) Solubilization of the functional C5a receptor from human polymorphonuclear leukocytes. J. Biol. Chem. 263, 520–526.PubMedGoogle Scholar
  47. 47.
    Rollins T. E., Siciliano S., Kobayashi S., Cianciarulo D. N., Bonillaargudo V., Collier K., and Springer M. S. (1991) Purification of the active C5a receptor from human polymorphonuclear leukocytes as a receptor-Gi complex. Proc. Natl. Acad. of Sci. USA 88, 971–975.CrossRefGoogle Scholar
  48. 48.
    Micklem K. J. and Sim R. B. (1985) Isolation of complement-fragment-iC3b-binding proteins by affinity-chromatography—the identification of p1 50,95 as an iC3b-binding protein. Biochem. J. 231, 233–236.PubMedGoogle Scholar
  49. 49.
    Sim R. B. (1985) Large-scale isolation of complement receptor type-1 (CR-1) from human-erythrocytes:-proteolytic fragmentation studies. Biochem. J. 232, 883–889.PubMedGoogle Scholar
  50. 50.
    Micklem K. J., Sim R. B., and Sim E. (1984) Analysis of C3-receptor activity on human lymphocytes-B and isolation of the complement receptor type-2 (Cr-2). Biochem. J. 224, 75–86.PubMedGoogle Scholar
  51. 51.
    van Strijp J. A. G., Russell D. G., Tuomanen E., Brown E. J., and Wright S. D. (1993) Ligand specificity of purified complement receptor type-3 (CD1 1b Cd18, alpha(M)beta(2), Mac-1)—indirect effects of an Arg-Gly-Asp (Rgd) sequence. J. Immunol. 151, 3324–3336.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2000

Authors and Affiliations

  • Carmen W. van den Berg
    • 1
  1. 1.Department of PharmacologyUniversity of Wales College of MedicineCardiffUK

Personalised recommendations