Skip to main content

Separation of Supercoiled DNA Using Capillary Electrophoresis

  • Protocol
Capillary Electrophoresis of Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 162))

  • 661 Accesses

Abstract

DNA supercoiling is a general phenomenon of almost all DNA in vivo. Plasmids, bacterial chromosomes, the mitochondrial genome and many viral genomes occur as closed circular DNA. Even some linear DNAs, such as eukaryotic chromosomes and yeast plasmids, behave like circular DNA because part of the DNA is anchored to the nuclear matrix creating closed-circular loops. Many DNA-associated processes are affected by changes in DNA supercoiling. These processes include the genome organization, transcription, gene expression, DNA replication, and recombination events (1). Plasmids are double-stranded circular DNAs which are capable of replicating independent of the chromosome. This property allows plasmids to be carriers of desired DNA sequences and to be replicated in large quantity. Plasmids were actually the first successful DNA vectors used for molecular cloning in bacteria. Recently, the potential of plasmids in gene therapy has been explored extensively. The rising interest in gene therapy for treatment of human diseases, such as cancer and genetic disorders, is reflected in the growing number of clinical trials (2,3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gellert M. (1981) DNA Topoisomerase. Ann. Rev. Biochem. 50, 879–910.

    Article  PubMed  CAS  Google Scholar 

  2. Sobol R. E. and Scanlon K. J. (eds.) (1995) Clinical protocols list. Cancer Gene Therapy 2, 67–74.

    Google Scholar 

  3. Culver K. M. (1994) Gene Therapy: A Handbook for Physicians. Mary Ann Liebert, Inc. New York.

    Google Scholar 

  4. Vinograd J., Lebowitz J., Radloff R., Watson R., and Laipis P. (1965) The twisted circular form of polyoma viral DNA. Proc. Natl. Acad. Sci. USA 53, 1104–1111.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen A. S., Najarian D. R., Paulus A., Guttman A., Smith J. A., and Karger B. L. (1988) Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis. Proc. Natl. Acad. Sci. USA 85, 9660–9663.

    Article  PubMed  CAS  Google Scholar 

  6. Maschke H. E., Frenz J., Belenkii A., Karger B. L., and Hancock W. S. (1993) Ultrasensitive plasmid mapping by high performance capillary electrophoresis. Electrophoresis 14, 509–514.

    Article  PubMed  CAS  Google Scholar 

  7. Hammond W. R., Oana H., Schwinefus J. J., Bonadio J., Levy R. L., and Morris M. D. (1997) Capillary electrophoresis of supercoiled and linear DNA in dilute hydroxyethyl cellulose solution. Anal. Chem. 69, 1192–1196.

    Article  PubMed  CAS  Google Scholar 

  8. Hebenbrok K., Schiigerl K., and Freitag R. (1993) Analysis of plasmid-DNA and cell protein of recombinant Escherichia coli using capillary gel electrophoresis. Electrophoresis 14, 753–758.

    Article  Google Scholar 

  9. Nackerdien Z., Morris S., Choquette S., Ramos B., and Atha D. (1996) Analysis of laser-induced plasmid DNA photolysis by capillary electrophoresis. J. Chromatogr. B 683, 91–96.

    Article  CAS  Google Scholar 

  10. Mao D. T., Levin J. D., Yu L., and Lautamo R. M. A. (1998) High-resolution capillary electrophoretic separation of supercoiled plasmid DNAs and their conformers in dilute hydroxypropylmethyl cellulose solutions containing no intercalating agent. J. Chromatogr. B 714, 21–27.

    Article  CAS  Google Scholar 

  11. Courtney B. C., Williams K. C., Bing Q. A., and Schlager J. J. (1995) Capillary gel elec-trophoresis as a method to determine ligation efficiency. Anal. Biochem. 228, 281–286.

    Article  PubMed  CAS  Google Scholar 

  12. Slater G. W., Mayer P., and Grossman P. D. (1995) Diffusion, Joule heating, and band broadening in capillary gel electrophoresis of DNA. Electrophoresis 16, 75–84.

    Article  PubMed  CAS  Google Scholar 

  13. Wang J. C. (1980) Superhelical DNA. Trends Biochem. Sci. 5, 219–221.

    Article  CAS  Google Scholar 

  14. Pulleyblank D. E. and Morgan A. R. (1975) The sense of naturally occurring superheli-ces and the unwinding angle of intercalated ethidium J. Mol. Biol. 91 1–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Mao, D.T., Lautamo, R.M.A. (2001). Separation of Supercoiled DNA Using Capillary Electrophoresis. In: Mitchelson, K.R., Cheng, J. (eds) Capillary Electrophoresis of Nucleic Acids. Methods in Molecular Biology, vol 162. Humana Press. https://doi.org/10.1385/1-59259-055-1:333

Download citation

  • DOI: https://doi.org/10.1385/1-59259-055-1:333

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-779-3

  • Online ISBN: 978-1-59259-055-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics