Skip to main content

Analysis of the Role of the AMP-Activated Protein Kinase in the Response to Cellular Stress

  • Protocol
Stress Response

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 99))

Abstract

The AMP-activated protein kinase (AMPK) is the central component of a protein kinase cascade that is activated by cellular stresses causing ATP depletion and has been referred to as a “fuel gauge” or “metabolic sensor” of the eukaryotic cell (1,2). The kinase is activated by phosphorylation by an upstream protein kinase termed AMP-activated protein kinase kinase (AMPKK) (3). Elevation of 5’-AMP activates the cascade by a complex mechanism involving binding of the nucleotide to both the upstream kinase (AMP-activated protein kinase kinase, AMPKK) and the downstream kinase, AMPK (See Subheading 1.2.). These effects of AMP are also antagonized by high concentrations (mM) of ATP. The AMP: ATP ratio in the cell varies approximately as the square of the ADP:ATP ratio, due to the action of adenylate kinase which maintains its reaction (2ADP ’ ATP + AMP) close to equilibrium at all times. Therefore, any cellular stress that affects the ability of the cell to maintain a high ATP: ADP ratio (normally approx 10:1 in an unstressed cell) leads to activation of the AMPK cascade. Cellular stresses can do this either by inhibiting ATP production or by increasing ATP consumption, and stresses shown to cause AMPK activation include heat shock (4), various mitochondrial inhibitors such as arsenite, antimycin A, dinitrophenol, and azide (4,5), ischemia/hypoxia in heart muscle (6), and exercise in skeletal muscle (7). ATP can also be depleted, and AMPK activated, by incubation of cells with high concentrations of certain sugars which trap cellular phosphate, such as fructose (8) and 2-deoxyglucose (9). Detachment of cultured cells from their substrate by trypsinization has also been reported to increase cellular AMP:ATP and to inhibit lipid synthesis, consistent with the activation of AMPK (10). Downstream targets for the system include biosynthetic pathways that are inhibited, thus conserving ATP, and catabolic pathways tht are activated, thus generating more ATP (1,2). Although most of the currently known targets for the system are metabolic enzymes, the yeast homolog of AMPK (i.e., the SNF1 complex) regulates gene expression (2). At least one isoform of AMPK is partly localized to the nucleus (see Subheading 1.1.), and it seems very likely that the mammalian system will also turn out to regulate gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hardie D. G. and Carling D. (1997) The AMP-activated protein kinase: fuel gauge of the mammalian cell? Eur. J. Biochem. 246, 259–273.

    Article  PubMed  CAS  Google Scholar 

  2. Hardie D. G., Carling D., and Carlson M. (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann. Rev. Biochem. 67, 821–855.

    Article  PubMed  CAS  Google Scholar 

  3. Hawley S. A., Davison M., Woods A., Davies S. P., Beri R. K., Carling D., and Hardie D. G. (1996) Characterization of the AMP-activated protein kinase kinase from rat liver, and identification of threonine-172 as the major site at which it phosphorylates and activates AMP-activated protein kinase. J. Biol. Chem. 271, 27,879–27,887.

    Article  PubMed  CAS  Google Scholar 

  4. Corton J. M., Gillespie J. G., and Hardie D. G. (1994) Role of the AMP-activated protein kinase in the cellular stress response. Current Biol. 4, 315–324.

    Article  CAS  Google Scholar 

  5. Witters L. A., Nordlund A. C., and Marshall L. (1991) Regulation of intracellular acetyl-CoA carboxylase by ATP depletors mimics the action of the 5′-AMP-activated protein kinase. Biochem. Biophys. Res. Comm. 181, 1486–1492.

    Article  PubMed  CAS  Google Scholar 

  6. Kudo N., Barr A. J., Barr R. L., Desai S., and Lopaschuk G. D. (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270, 17,513–17,520.

    Article  PubMed  CAS  Google Scholar 

  7. Winder W. W., and Hardie D. G. (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am. J. Physiol. 270, E299–E304.

    PubMed  CAS  Google Scholar 

  8. Moore F., Weekes J., and Hardie D. G. (1991) AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur. J. Biochem. 199, 691–697.

    Article  PubMed  CAS  Google Scholar 

  9. Sato R., Goldstein J. L., and Brown M. S. (1993) Replacement of Serine-871 of hamster 3-hydroxy-3-methylglutaryl CoA reductase prevents phosphorylation by AMP-activated protein kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc. Natl. Acad. Sci. USA 90, 9261–9265.

    Article  PubMed  CAS  Google Scholar 

  10. Page K. and Lange Y. (1997) Cell adhesion to fibronectin regulates membrane lipid biosynthesis through 5′-AMP-activated protein kinase. J. Biol. Chem. 272, 19,339–19,342.

    Article  PubMed  CAS  Google Scholar 

  11. Carling D., Aguan K., Woods A., Verhoeven A. J. M., Beri R. K., Brennan C. H., Sidebottom C., Davison M. D., and Scott J. (1994) Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J. Biol. Chem. 269, 11,442–11,448.

    PubMed  CAS  Google Scholar 

  12. Gao G., Widmer J., Stapleton D., Teh T., Cox T., Kemp B. E., and Witters L. A. (1995) Catalytic subunits of the porcine and rat 5′-AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochim. Biophys. Acta 1266, 73–82.

    Article  PubMed  Google Scholar 

  13. Stapleton D., Mitchelhill K. I., Gao G., Widmer J., Michell B. J., Teh T., House C. M., Fernandez C. S., Cox T., Witters L. A., and Kemp B. E. (1996) Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271, 611–614.

    Article  PubMed  CAS  Google Scholar 

  14. Woods A., Salt I., Scott J., Hardie D. G., and Carling D. (1996) The αl and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 397, 347–351.

    Article  PubMed  CAS  Google Scholar 

  15. Woods A., Cheung P. C. F., Smith F. C., Davison M. D., Scott J., Beri R. K., and Carling D. (1996) Characterization of AMP-activated protein kinase β and γ subunits: assembly of the heterotrimeric complex in vitro. J. Biol. Chem. 271, 10,282–10,290.

    Article  PubMed  CAS  Google Scholar 

  16. Gao G., Fernandez S., Stapleton D., Auster A. S., Widmer J., Dyck J. R. B., Kemp B. E., and Witters L. A. (1996) Non-catalytic β-and γ-subunit isoforms of the 5′-AMP-activated protein kinase. J. Biol. Chem. 271, 8675–8681.

    Article  PubMed  CAS  Google Scholar 

  17. Thornton C., Snowden M. A., and Carling D. (1998) Identification of a novel AMP-activated protein kinase p subunit isoform which is highly expressed in skeletal muscle. J. Biol. Chem. 273, 12,443–12,450.

    Article  PubMed  CAS  Google Scholar 

  18. Stapleton D., Woollatt E., Mitchelhill K. I., Nicholl J. K., Fernandez C. S., Michell B. J., Witters L. A., Power D. A., Sutherland G. R., and Kemp B. E. (1997) AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett. 409, 452–456.

    Article  PubMed  CAS  Google Scholar 

  19. Salt I. P., Celler J. W., Hawley S. A., Prescott A., Woods A., Carling D., and Hardie D. G. (1998) AMP-activated protein kinase-greater AMP dependence, and preferential nuclear localization, of complexes containing the α2 isoform. Biochem. J. 334, 177–187.

    PubMed  CAS  Google Scholar 

  20. Carling D., Clarke P. R., Zammit V. A., and Hardie D. G. (1989) Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur. J. Biochem. 186, 129–136.

    Article  PubMed  CAS  Google Scholar 

  21. Davies S. P., Helps N. R., Cohen P. T. W., and Hardie D. G. (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2Ac. FEBS Lett. 377, 421–425.

    Article  PubMed  CAS  Google Scholar 

  22. Davies S. P., Carling D., Munday M. R., and Hardie D. G. (1992) Diurnal rhythm of phosphorylation of rat liver acetyl-CoA carboxylase by the AMP-activated protein kinase, demonstrated using freeze-clamping. Effects of high fat diets. Eur. J. Biochem. 203, 615–623.

    Article  PubMed  CAS  Google Scholar 

  23. Gillespie J. G., and Hardie D. G. (1992) Phosphorylation and inactivation of HMG-CoA reductase at the AMP-activated protein kinase site in response to fructose treatment of isolated rat hepatocytes. FEBS Lett. 306, 59–62.

    Article  PubMed  CAS  Google Scholar 

  24. Corton J. M., Gillespie J. G., Hawley S. A., and Hardie D. G. (1995) 5-Aminoimidazole-4-carboxamide ribonucleoside: a specific method for activating AMP-activated protein kinase in intact cells? Eur. J. Biochem. 229, 558–565.

    Article  PubMed  CAS  Google Scholar 

  25. Davies S. P., Carling D., and Hardie D. G. (1989) Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur. J. Biochem. 186, 123–128.

    Article  PubMed  CAS  Google Scholar 

  26. Dale S., Wilson W. A., Edelman A. M., and Hardie D. G. (1995) Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett. 361, 191–195.

    Article  PubMed  CAS  Google Scholar 

  27. Henin N., Vincent M. F., Gruber H. E., and Van den Berghe G. (1995) Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase. FASEB J. 9, 541–546.

    PubMed  CAS  Google Scholar 

  28. Velasco G., Geelen M. J. H., and Guzman M. (1997) Control of hepatic fatty acid oxidation by 5′-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Arch. Biochem. Biophys. 337, 169–175.

    Article  PubMed  CAS  Google Scholar 

  29. Merrill G. M., Kurth E., Hardie D. G., and Winder W. W. (1997) AICAR decreases malonyl-CoA and increases fatty acid oxidation in skeletal muscle of the rat. Am. J. Physiol. 36, E1107–E1112.

    Google Scholar 

  30. Javaux F., Vincent M. F., Wagner D. R., and van den Berghe G. (1995) Celltype specificity of inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside. Lack of effect in rabbit cardiomyocytes and human erythrocytes, and inhibition in FTO-2B rat hepatoma cells. Biochem J. 305, 913–919.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hardie, D.G., Salt, I.P., Davies, S.P. (2000). Analysis of the Role of the AMP-Activated Protein Kinase in the Response to Cellular Stress. In: Walker, J.M., Keyse, S.M. (eds) Stress Response. Methods in Molecular Biology™, vol 99. Humana Press. https://doi.org/10.1385/1-59259-054-3:63

Download citation

  • DOI: https://doi.org/10.1385/1-59259-054-3:63

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-611-6

  • Online ISBN: 978-1-59259-054-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics