Skip to main content

Detection of Oxidative Stress in Lymphocytes Using Dichlorodihydrofluorescein Diacetate

  • Protocol
Stress Response

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 99))

Abstract

Normal oxidative metabolism leads to the generation of reactive oxygen species (ROS), in particular, superoxide anion (O2−), and its dismutation product hydrogen peroxide (H2O2), which may escape from the electron-transport chain (1. In addition, oxidative stress may be generated through the action of specialized enzymes, e.g., NADPH oxidase, nitric oxide synthase, cycloxygenase, and lipoxygenase, which produce H2O2, O2−, NO, and lipid hydroperoxides [ROOH] (2,3). Toxicants can also induce oxidative stress by a variety of mechanisms. Compounds that uncouple or block the electron-transport chain lead to increased leakage of ROS from mitochondria to the cytosol. Redox cycling of metals can result in H2O2, hydroxyl radical (·OH), and thionyl radical (RS·) production, and can deplete cellular thiol pools (4). In addition, toxicants may directly inhibit antioxidant enzymes or compromise cellular reducing capacity by depletion of NAD(P)H, and glutathione (GSH) through the cytochrome P450 oxidoreductase and glutathione-S-transferase detoxification pathways, and through the action of the GSH peroxidase/reductase cycle (5). In cells with diminished natural antioxidant capacity, normal metabolic sources of ROS may overwhelm the redox balance and push cells into a condition of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richter P., Gogvadze V., Laffranchi R., Shalapbach R., Schweizer M., Suter M., Walter P., and Yaffee M. (1995) Oxidants in mitochondria: from physiology to diseases. Biochem. Biophys. Acta 1271, 67–74.

    PubMed  Google Scholar 

  2. Gille G. and Sigler K. (1995) Oxidative stress and living cells. Folia Microbiol. Praha. 40(2), 131–152.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen G. (1994) Enzymatic/nonenzymatic sources of oxyradicals and regulation of antioxidant defenses. Ann. N.Y. Acad. Sci. 738, 8–14.

    Article  PubMed  CAS  Google Scholar 

  4. Stohs S. and Bagchi D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 18(2), 321–336.

    Article  CAS  Google Scholar 

  5. Seis H. and de-Groot H. (1992) Role of reactive oxygen species in cell toxicity. Toxicol. Lett. 64-65 Spec. No. pp. 547–551.

    Article  Google Scholar 

  6. Tyson C. and Frazier J. (eds.) (1994) Methods in Toxicology, Vol 1B: In Vitro Toxicity Indicators. Academic Press, Orlando, FL.

    Google Scholar 

  7. Poot M., Kavanagh T., June C., and Rabinovitch P. (1995) Assessment of cell physiology by flow cytometry, in Weir’s Handbook of Experimental Immunology 5th ed. (Weir D., Blackwell C., Herzenberg L., and Herzenberg L., eds.), Oxford Science Inc. Oxford, UK, pp. 53.1–53.11.

    Google Scholar 

  8. Keston A. and Brandt R. (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11, 1–5.

    Article  PubMed  CAS  Google Scholar 

  9. Paul B. and Sbarra A. (1968) The role of the phagocyte in host-parasite interactions. XIII. The direct quantitative estimation of H2O2 in phagocytizing cells. Biochem. Biophys. Acta. 156, 168–178.

    PubMed  CAS  Google Scholar 

  10. Bass D., Parce J., Dachatelet L., Szejda P., Seeds M., and Thomas M. (1983) Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation. J. Immunol. 130, 1910–1917.

    PubMed  CAS  Google Scholar 

  11. Burrow S. and Valet G. (1987) Flow cytometric characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2,7−dichlorofluorescein (DCF). Eur. J. Cell. Biol. 43, 128.

    Google Scholar 

  12. Haugland R. (1996) Assaying oxidative activity in live cells and tissue, in Handbook of Fluorescent Probes and Research Chemicals (Spence M., ed.), Molecular Probes Inc., Eugene, OR, pp. 491, 492.

    Google Scholar 

  13. Black M. and Brandt R. (1974) Spectrofluorometric analysis of hydrogen peroxide. Anal. Biochem. 58, 246–254.

    Article  PubMed  CAS  Google Scholar 

  14. LeBel C., Ischiropoulos H., and Bondy S. (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227–231.

    Article  PubMed  CAS  Google Scholar 

  15. Rothe G. and Valet G. (1990) Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′,7′-dichlorofluorescin. J. Leukocyte Biol. 47, 440–448.

    PubMed  CAS  Google Scholar 

  16. Royall J. and Ischiropoulos H. (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302(2), 348–355.

    Article  PubMed  CAS  Google Scholar 

  17. Cathcart R., Schwiers E., and Ames B. (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal. Biochem. 134, 111–116.

    Article  PubMed  CAS  Google Scholar 

  18. Rao K., Padmanabhan P., Kilby D., Cohen H., Currie M., and Weinberg J. (1992) Flow cytometric analysis of nitric oxide production in human neutrophils using dichlorofluorescein diacetate in the presence of a calmodulin inhibitor. J. Leukocyte Biol. 51, 496–500.

    PubMed  CAS  Google Scholar 

  19. Homan-Muller J., Weening R. S., and Roos D. (1975) Production of hydrogen peroxide by phagocytizing human granulocytes. J. Lab. Clin. Med. 85(2), 198–207.

    PubMed  CAS  Google Scholar 

  20. Horio F., Fukuda M., Katoh H., Petruzzelli M., Yano N., Ritterhaus C., Bonner-Weir S., and Hattori M. (1994) Reactive oxygen intermediates in autoimmune islet cell destruction of the NOD mouse induced by peritoneal exudate cells (rich in macrophages) but not in T cells. Diabetologia 37(1), 22–31.

    Article  PubMed  CAS  Google Scholar 

  21. Birdsall H. (1991) Induction of ICAM-1 on human neural cells and mechanisms of neutrophil-mediated injury. Am. J. Pathol. 139(6), 1341–1350.

    PubMed  CAS  Google Scholar 

  22. Fukumura D., Kurose I., Miura S., Tsuchiya M., and Ishii H. (1995) Oxidative stress in gastric mucosal injury: role of platelet-activating factor-activated granulocytes. J. Gasterentol. 30(5), 565–571.

    Article  CAS  Google Scholar 

  23. Minamiya Y., Abo S., Kitamura M., Izumi K., Kimura Y., Tozawa K., and Saito S. (1995) Endotoxin-induced hydrogen peroxide production in intact pulmonary circulation of rat. Am. J. Respir. Crit. Care Med. 152(1), 348–354.

    PubMed  CAS  Google Scholar 

  24. al-Mehdi A., Shuman H., and Fisher A. (1994) Fluorescence microtopography of oxidative stress in lung ischemia-reperfusion. Lab. Invest. 70(4), 579–587.

    PubMed  CAS  Google Scholar 

  25. Rouhi N., Levallois C., Favier F., and Mani J. (1989) Cyclooxygenase and lipoxygenase inhibitors act differently on oxidative product formation by immune mononuclear cells: a flow cytometric investigation. Int. J. Immunopharmacol. 11(6), 681–686.

    Article  Google Scholar 

  26. Jeitner T., Kneale C., Christopherson R., and Hunt N. (1994) Thiol-bearing compounds selectively inhibit protein kinase C-dependent oxidative events and proliferation in human T cells. Biochem. Biophys. Acta 1223(1), 15–22.

    Article  PubMed  CAS  Google Scholar 

  27. Wang J., Jerrells T., and Spitzer J. (1996) Decreased production of reactive oxygen intermediates is an early event during in vitro apoptosis of rat thymocytes. Free Radical Biol. Med. 20(4), 533–542.

    Article  CAS  Google Scholar 

  28. Fernandez A., Kiefer J., Fosdick L., and McConkey D. (1995) Oxygen radical production and thiol depletion are required for Ca2+−mediated endogenous endonuclease activation in apoptotic thymocytes. J. Immunol. 155, 5133–5139.

    PubMed  CAS  Google Scholar 

  29. Toledano B., Bastien Y., Noya F., Baruchel S., and Mazer B. (1997) Platelet activating factor abrogates apoptosis in a human B lymphoblastoid cell line. J. Immunol. 158(8), 3705–3715.

    PubMed  CAS  Google Scholar 

  30. Kohno T., Yamada Y., Hata T., Mori H., Yamamura M., Tomonaga M., Urata Y., Goto S., and Kondo T. (1996) Relation of oxidative stress and glutathione synthesis to CD95(Fas/APO−1)-mediated apoptosis of adult T cell leukemia cells. J. Immunol. 156, 4711–4728.

    Google Scholar 

  31. Hockenbery D., Oltval Z., Yin X-M., Milliman C., and Korsmeyer S. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251.

    Article  PubMed  CAS  Google Scholar 

  32. Krejsa C., Nadler S., Esselstyn J., Kavanagh T., Ledbetter J., and Schieven G. (1997) Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. J. Biol. Chem. 272, 11,541–11,549.

    Article  PubMed  CAS  Google Scholar 

  33. Burchiel S., Kerkvliet N., Geberick G., Lawrence D., and Ladics G. (1997) Assessment of immunotoxicity by multiparameter flow cytometry. Fundam. Appl. Toxicol. 38(1), 38–54.

    Article  PubMed  CAS  Google Scholar 

  34. Woolson R. (1987) Statistical Methods for the Analysis of Biomedical Data, Wiley, New York, pp. 23,24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Krejsa, C.M., Schieven, G.L. (2000). Detection of Oxidative Stress in Lymphocytes Using Dichlorodihydrofluorescein Diacetate. In: Walker, J.M., Keyse, S.M. (eds) Stress Response. Methods in Molecular Biology™, vol 99. Humana Press. https://doi.org/10.1385/1-59259-054-3:35

Download citation

  • DOI: https://doi.org/10.1385/1-59259-054-3:35

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-611-6

  • Online ISBN: 978-1-59259-054-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics