Skip to main content

Analysis of the Mammalian Heat-Shock Response

Inducible Gene Expression and Heat-Shock Factor Activity

  • Protocol
  • 1536 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 99))

Abstract

The evolutionarily conserved heat-shock response has been extensively studied as a model for transcriptional regulation. In eukaryotic cells, the regulation of heat-shock gene expression is mediated by a family of related proteins, the heat-shock transcription factors (HSFs) (18). Smaller eukaryotes such as yeast and Drosophila melanogaster usually express single members of the HSF family (13), while larger eukaryotes express multiple HSFs. At least four HSF family members have been identified in vertebrate systems (48). Multiple HSFs may have arisen to allow expression of heat shock proteins under different conditions, such that divergent signaling pathways converge to result in the production of a common class of proteins, the heat-shock proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sorger P. K. and Pelham H. R. (1988) Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54, 855–864.

    Article  PubMed  CAS  Google Scholar 

  2. Wiederrecht G., Seto D., and Parker C. S. (1988) Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54, 841–853.

    Article  PubMed  CAS  Google Scholar 

  3. Clos J., Westwood J. T., Becker P. B., Wilson S., Lambert K., and Wu C. (1990) Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63, 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  4. Rabindran S. K., Giorgi G., Clos J., and Wu C. (1991) Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88, 6906–6910.

    Article  PubMed  CAS  Google Scholar 

  5. Sarge K. D., Zimarino V., Holm K., Wu C., and Morimoto R. I. (1991) Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5, 1902–1911.

    Article  PubMed  CAS  Google Scholar 

  6. Schuetz T. J., Gallo G. J., Sheldon L., Tempst P., and Kingston R. E. (1991) Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA. 88, 6911–6915.

    Article  PubMed  CAS  Google Scholar 

  7. Nakai A. and Morimoto R. I. (1993) Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 13, 1983–1997.

    PubMed  CAS  Google Scholar 

  8. Nakai A., Kawazoe Y., Tanabe M., Nagata K., and Morimoto R. I. (1995) The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol. Cell. Biol. 15, 5268–5278.

    PubMed  CAS  Google Scholar 

  9. Lis J. T. and Wu C. (1993) Protein traffic on the heat shock promoter: parking, stalling and trucking along. Cell 74, 1–20.

    Article  PubMed  CAS  Google Scholar 

  10. Morimoto R. I., Jurivich D. A., Kroeger P. E., Mathur S. K., Murphy S. P., Nakai A., Sarge K., Abravaya K., and Sistonen L. T. (1994) Regulation of heat shock gene transcription by a family of heat shock factors, in The Biology of Heat Shock Proteins and Molecular Chaperones (Morimoto R. I., Tissieres A., and Georgopoulos C., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 417–455.

    Google Scholar 

  11. Wu C. (1995) Heat shock transcription factors: structure and regulation. Annu. Rev. Cell. Dev. Biol. 11, 441–469.

    Article  PubMed  CAS  Google Scholar 

  12. Morimoto R. I., Kroeger P. E., and Cotto J. J. (1996) The transcriptional regulation of heat shock genes: a plethora of heat shock factors and regulatory conditions, in Stress-Inducible Cellular Responses. (Feige U., Morimoto R. I., Yahara I., and Polla B., eds.), Birkauser Verlag, Basel, pp. 139–163.

    Google Scholar 

  13. Gallo G. J., Schuetz T. J., and Kingston R. E. (1991) Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 281–288.

    PubMed  CAS  Google Scholar 

  14. Baler R., Dahl G., and Voellmy R. (1993) Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13, 2486–2496.

    PubMed  CAS  Google Scholar 

  15. Rabindran S. K., Haroun R. I., Clos J., Wisniewski J., and Wu C. (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259, 230–234.

    Article  PubMed  CAS  Google Scholar 

  16. Sarge K. D., Murphy S. P., and Morimoto R. I. (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13, 1392–1407.

    PubMed  CAS  Google Scholar 

  17. Sistonen L., Sarge K. D., and Morimoto R. I. (1994) Human heat shock factors 1 and 2 are differentially activated and can synergistically induce hsp70 gene transcription. Mol. Cell. Biol. 14, 2087–2099.

    PubMed  CAS  Google Scholar 

  18. Nakai A., Kawazoe Y., Tanabe M., Nagata K., and Morimoto R. I. (1995) The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Mol. Cell. Biol. 15, 5268–5278.

    PubMed  CAS  Google Scholar 

  19. Jakobsen B. K. and Pelham H. R. (1991) A conserved heptapeptide restrains the activity of the yeast heat shock transcription factor. EMBO J. 10, 369–375.

    PubMed  CAS  Google Scholar 

  20. Jurivich D. A., Sistonen L., Kroes R. A., and Morimoto R. I. (1992) Effect of sodium salicylate on the human heat shock response. Science 255, 1243–1245.

    Article  PubMed  CAS  Google Scholar 

  21. Giardina C. and Lis J. T. (1995) Sodium salicylate and yeast heat shock gene transcription. J. Biol. Chem. 270, 10,369–10,372.

    Article  PubMed  CAS  Google Scholar 

  22. Cotto J. J., Kline M., and Morimoto R. I. (1996) Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. J. Biol. Chem. 271, 3355–3358.

    Article  PubMed  CAS  Google Scholar 

  23. Lee B. S., Chen J., Angelidis C., Jurivich D. A., and Morimoto R. I. (1995) Pharmacological modulation of heat shock factor 1 by antiinflammatory drugs results in protection against stress-induced cellular damage. Proc. Natl. Acad. Sci. USA. 92, 7207–7211.

    Article  PubMed  CAS  Google Scholar 

  24. Morimoto R. I., Tissieres A., and Georgopoulos C. (1990) The stress response, function of the proteins, and perspectives, in Stress Proteins in Biology and Medicine (Morimoto R. I., Tissieres A., and Georgopoulos C. eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 1–36.

    Google Scholar 

  25. Tanabe M., Nakai A., Kawazoe Y., and Nagata K. (1997) Different thresholds in the responses of two heat shock transcription factors, HSF1 and HSF3. J. Biol. Chem. 272, 15,389–15,395.

    Article  PubMed  CAS  Google Scholar 

  26. Mezger V., Rallu M., Morimoto R. I., Morange M., and Renard J. P. (1994) Heat shock factor 2-like activity in mouse blastocytes. Dev. Biol. 166, 819–822.

    Article  PubMed  CAS  Google Scholar 

  27. Rallu M., Loones M., Lallemand Y., Morimoto R., Morange M., and Mezger V. (1997) Function and regulation of heat shock factor 2 during mouse embryogenesis. Proc. Natl. Acad. Sci. USA 94, 2392–2397.

    Article  PubMed  CAS  Google Scholar 

  28. Sarge K. D., Park-Sarge O. K., Kirby J. O., Mayo K. E., and Morimoto R. I. (1994) Expression of heat shock factor 2 in mouse testis: potential role as a regulator of heat-shock protein gene expression during spermatogenesis. Biol. Reprod. 50, 1334–1343.

    Article  PubMed  CAS  Google Scholar 

  29. Sistonen L., Sarge K. D., Phillips B., Abravaya K., and Morimoto R. I. (1992) Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell. Biol. 12, 4104–4111.

    PubMed  CAS  Google Scholar 

  30. Theodorakis N. G., Zand D. J., Kotzbauer P. T., Williams G. T., and Morimoto R. I. (1989) Hemin-induced transcriptional activation of the HSP70 gene during erythroid maturation in K562 cells is due to a heat shock factor-mediated stress response. Mol. Cell. Biol. 9, 3166–3173.

    PubMed  CAS  Google Scholar 

  31. Mathew A., Mathur S. K., and Morimoto R. I. (1998) Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 18, 5091–5098.

    PubMed  CAS  Google Scholar 

  32. Dignam J. D., Lebovitz R. M., and Roeder R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489.

    Article  PubMed  CAS  Google Scholar 

  33. Harlow E. and Lane D. (1988) Antibodies: A laboratory Manual. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY.

    Google Scholar 

  34. Larson J. S., Schuetz T. J., and Kingston R. E. (1988) Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature 335, 372–375.

    Article  PubMed  CAS  Google Scholar 

  35. Coons A. H., Creech H. J., and Jones R. N. (1941) Immunological properties of an antibody containing fluorescent group. Proc. Soc. Exp. Biol. Med. 47, 200–202.

    CAS  Google Scholar 

  36. Cotto J, Fox S, and Morimoto R (1997) HSF1 granules: a novel stress-induced nuclear compartment of human cells. J. Cell Sci. 110, 2925–2934.

    PubMed  CAS  Google Scholar 

  37. Jolly C., Morimoto R., Robert-Nicoud M., Vourcþ C. (1997) HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J. Cell Sci. 110, 2935–2941.

    PubMed  CAS  Google Scholar 

  38. Siegel L. M., and Monty K. J. (1966) Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation: Application to crude preparations of sulfite and hydroxylamine reductases. Biochim. Biophys. Acta. 112, 346–362.

    Article  PubMed  CAS  Google Scholar 

  39. Westwood J. T. and Wu C. (1993) Activation of Drosophila heat shock factor: conformational change associated with a monomer-to-trimer transition. Mol. Cell. Biol. 13, 3481–3486.

    PubMed  CAS  Google Scholar 

  40. Perisic O., Xiao H., and Lis J. T. (1989) Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59, 797–806.

    Article  PubMed  CAS  Google Scholar 

  41. Abdella P. M., Smith P. K., and Royer G. P. (1979) A new cleavable reagent for cross-linking and reversible immobilization of proteins. LitBiochem. Biophys. Res. Commun. 87, 734–742.

    Article  CAS  Google Scholar 

  42. Fried M. and Crothers D. M. (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9, 6505–6525.

    Article  PubMed  CAS  Google Scholar 

  43. Garner M. M. and Revzin A. (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9, 3047–3060.

    Article  PubMed  CAS  Google Scholar 

  44. Mosser D. D., Theodorakis N. G., and Morimoto R. I. (1988) Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol. Cell. Biol. 8, 4736–4744.

    PubMed  CAS  Google Scholar 

  45. Abravaya K., Phillips B., and Morimoto R. I. (1991) Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev. 5, 2117–2127.

    Article  PubMed  CAS  Google Scholar 

  46. Abravaya K., Phillips B., and Morimoto R. I. (1991) Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Mol. Cell. Biol. 11, 586–592.

    PubMed  CAS  Google Scholar 

  47. Phillips B., Abravaya K., and Morimoto R. I. (1991) Analysis of the specificity and mechanism of transcriptional activation of the hsp70 gene during infection by DNA viruses. J. Virol. 65, 5680-5692.

    Google Scholar 

  48. Kroeger P. E., Sarge K. D., and Morimoto R. I. (1993) Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol. Cell. Biol. 13, 3370–3383.

    PubMed  CAS  Google Scholar 

  49. Kroeger P. E. and Morimoto R. I. (1994) Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol. Cell. Biol. 14, 7592–7603.

    PubMed  CAS  Google Scholar 

  50. Mueller P. R. and Wold B. (1989) In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246, 780–786.

    Article  PubMed  CAS  Google Scholar 

  51. Dynan W. S. (1987) DNase I footprinting as an assay for mammalian gene regulatory proteins, in Genetic Engineering: Principles and Methods (Setlow J. ed.), Plenum Press, NY. Vol. 9. pp. 75–87.

    Google Scholar 

  52. Hertzberg R. P. and Dervan P. B. (1984) Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses. Biochemistry 23, 3934–3945.

    Article  PubMed  CAS  Google Scholar 

  53. Oℋalloran T. V., Frantz B., Shin M. K., Ralston D. M., and Wright J. G. (1989) The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56, 119–129.

    Article  Google Scholar 

  54. Tullius T. D., Dombroski B. A., Churchill M. E., and Kam L. (1987) Hydroxyl radical footprinting: a high-resolution method for mapping protein-DNA contacts. Methods Enzymol. 155, 537–558.

    Article  PubMed  CAS  Google Scholar 

  55. Reeder R. H. and Roeder R. G. (1972) Ribosomal RNA synthesis in isolated nuclei. J. Mol. Biol. 67, 433–441.

    Article  PubMed  CAS  Google Scholar 

  56. Marzluff W. F. Jr, Murphy E. C. Jr., and Huang R. C. (1974) Transcription of the genes for 5S ribosomal RNA and transfer RNA in isolated mouse myeloma cell nuclei. Biochemistry 13, 3689–3696.

    Article  PubMed  CAS  Google Scholar 

  57. Udvardy A. and Seifart K. H. (1976) Transcription of specific genes in isolated nuclei from HeLa cells in vitro. Eur. J. Biochem. 62, 353–363.

    Article  PubMed  CAS  Google Scholar 

  58. Groudine M., Peretz M., and Weintraub H. (1981) Transcriptional regulation of hemoglobin switching in chicken embryos. Mol. Cell. Biol. 1, 281–288.

    PubMed  CAS  Google Scholar 

  59. Banerji S. S., Theodorakis N. G., and Morimoto R. I. (1984) Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. Mol. Cell. Biol. 4, 2437–2448.

    PubMed  CAS  Google Scholar 

  60. Shi Y., Mosser D. D., and Morimoto R. I. (1998) Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12, 654–666.

    Article  PubMed  CAS  Google Scholar 

  61. Lawrence J. B., Singer R. H., and Marselle L. M. (1989) Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57, 493–502.

    Article  PubMed  CAS  Google Scholar 

  62. Jolly C., Mongelard C., Robert-Nicoud M., and Vourcþ C. (1997). Optimization of nuclear transcripts detection by FISH and combination with fluorescence immunocytochemical detection of transcription factors. J. Histochem. Cytochem. 45, 1585–1592.

    PubMed  CAS  Google Scholar 

  63. Lichter P., Cremer T., Borden J., Manuelidis L., and Ward D. C. (1988) Delineation of individual chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80, 224–234.

    Article  PubMed  CAS  Google Scholar 

  64. Gorman C. M., Moffat L. F., and Howard B. H. (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044–1051.

    PubMed  CAS  Google Scholar 

  65. Gould S. J. and Subramani S. (1988) Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175, 5–13.

    Article  PubMed  CAS  Google Scholar 

  66. Brasier A. R., Tate J. E., and Habener J. F. (1989) Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques 7, 1116–1122.

    PubMed  CAS  Google Scholar 

  67. Herbomel P., Bourachot B., and Yaniv M. (1984) Two distinct enhancers with different cell specificities coexist in the regulatory region of polyoma. Cell 39 (Pt 2), 653–662.

    Article  PubMed  CAS  Google Scholar 

  68. Shi Y., Kroeger P., and Morimoto R. I. (1995) The Carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive. Mol. Cell. Biol. 15, 4309–4318.

    PubMed  CAS  Google Scholar 

  69. Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  70. Dynan W. S. and Tjian R. (1985) Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature 316, 774–778.

    Article  PubMed  CAS  Google Scholar 

  71. Wu B., Hunt C., and Morimoto R. (1985) Structure and expression of the human gene encoding major heat shock protein HSP70. Mol. Cell. Biol. 5, 330–341.

    PubMed  CAS  Google Scholar 

  72. Berk A. J. and Sharp P. A. (1978) Structure of the adenovirus 2 early mRNAs. Cell 14, 695–711.

    Article  PubMed  CAS  Google Scholar 

  73. Young P. R., Hazuda D. J., and Simon P. L. (1988) Human interleukin 1 beta is not secreted from hamster fibroblasts when expressed constitutively from a transfected cDNA. J. Cell Biol. 107, 447–456.

    Article  PubMed  CAS  Google Scholar 

  74. O’Farrell P. H. (1975) High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007–4021.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mathew, A., Shi, Y., Jolly, C., Morimoto, R.I. (2000). Analysis of the Mammalian Heat-Shock Response. In: Walker, J.M., Keyse, S.M. (eds) Stress Response. Methods in Molecular Biology™, vol 99. Humana Press. https://doi.org/10.1385/1-59259-054-3:217

Download citation

  • DOI: https://doi.org/10.1385/1-59259-054-3:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-611-6

  • Online ISBN: 978-1-59259-054-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics