Skip to main content

Site-Directed Spin Labeling of Proteins

Applications to Diphtheria Toxin

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 145))

Abstract

Site-directed spin labeling (SDSL) has emerged as a powerful approach to study structure and dynamics of proteins that are not readily amenable to X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy (13). SDSL involves the site-specific labeling of proteins with spin probes and the use of electron paramagnetic resonance (EPR) spectroscopy for analysis of the labeled proteins. Spin labeling is typically accomplished by cysteine-substitution mutagenesis followed by reaction with a sulfhydryl-specific nitroxide reagent (4). The reagent most widely used is methanethiosulfonate spin label I (5), which generates the nitroxide side chain designated R1, as shown in Fig-1. Other spin label reagents are also used for specific purposes (6), but examples in this chapter make use of R1 exclusively.

Reaction of the methanethiosulfonate spin label (I) with a cysteine residue to generate the side chain R1.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hubbell W. L., Mchaourab H. S., Altenbach C., and Lietzow M. A. (1996) Watching proteins move using site-directed spin labeling. Structure 4, 779–783.

    Article  PubMed  CAS  Google Scholar 

  2. Hubbell W. L. and Altenbach C. (1994) Site-directed spin labeling of membrane proteins, in Membrane Protein Structure: Experimental Approaches (White S. H., ed.), Oxford University Press London, pp. 224–248.

    Google Scholar 

  3. Hubbell W. L. and Altenbach C. (1994) Investigation of structure and dynamics in membrane proteins using site-directed spin labeling. Curr. Opin. Struct. Biol. 4, 566–573.

    Article  CAS  Google Scholar 

  4. Todd A., Cong J., Levinthal F., Levinthal C., and Hubbell W. L. (1989) Site-directed mutagenesis of colicin E1 provides specific attachment of spin labels whose spectra are sensitive to local conformation. Proteins 6, 294–305.

    Article  PubMed  CAS  Google Scholar 

  5. Berliner L. J., Grunwald J., Hankovszky H. O., and Hideg. K. (1982) A novel reversible thiol-specific spin label: papain active site labeling and inhibition. Anal. Biochem. 119, 450–455.

    Article  PubMed  CAS  Google Scholar 

  6. Mchaourab H. S., Lietzow M. A., Hideg K., and Hubbell W. L. (1996) Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry 35, 7692–7704.

    Article  PubMed  CAS  Google Scholar 

  7. Budil D. E., Lee S., Saxena S., and Freed J. H. (1996) Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. J. Magn. Res. 120, 155–189.

    Article  CAS  Google Scholar 

  8. Subczynski W. K. and Hyde J. S. (1981) The diffusion concentration product of oxygen in lipid bilayers using the spin label T1 method. Biochim. Biophys. Acta 643, 283–291.

    Article  PubMed  CAS  Google Scholar 

  9. Altenbach C., Flitsch S. L., Khorana H. G., and Hubbell W. L. (1989) Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines. Biochemistry 28, 7806–7812.

    Article  PubMed  CAS  Google Scholar 

  10. Farahbakhsh Z. T., Altenbach C., and Hubbell W. L. (1992) Spin labeled cys-teines as sensors for protein-lipid interaction and conformation in rhodopsin. Photochem. Photobiol. 56, 1019–1033.

    Article  PubMed  CAS  Google Scholar 

  11. Rabenstein M. D. and Shin Y. K. (1995) Determination of the distance between two spin labels attached to a macromolecule. Proc. Natl. Acad. Sci. USA 92, 823–943.

    Article  Google Scholar 

  12. Mchaourab H. S., Oh K. J., Fang C. J., and Hubbell W. L. (1997) Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced con-formational transition studied by site-directed spin labeling. Biochemistry 36, 307–316.

    Article  PubMed  CAS  Google Scholar 

  13. Steinhoff H. J., Radzwill N., Thevis W., Lenz V., Brandenburg D., Antson A., Dodson G., and Wollmer A. (1997) Determination of interspin distances between spin labels attached to insulin: comparison of electron paramagnetic resonance data with the X-ray structure. Biophys. J. 73, 3287–3298.

    Article  PubMed  CAS  Google Scholar 

  14. Hustedt E. J., Smirnov A. I., Laub C. F., Cobb C. E., and Beth A. H. (1997) Molecular distances from dipolar coupled spin-labels: the global analysis of mul-tifrequency continuous wave electron paramagnetic resonance data. Biophys. J. 74, 1861–1877.

    Article  Google Scholar 

  15. Voss J., Salwinski L., Kaback H. R., and Hubbell W. L. (1995) A method for distance determination in proteins using a designed metal ion binding site and site-directed spin labeling: evaluation with T4 lysozyme. Proc. Natl. Acad. Sci. USA 92, 12,295–12,299.

    Article  PubMed  CAS  Google Scholar 

  16. Poole C. P. (1983) Electron Spin Resonance. Dover Publications Mineola, NY.

    Google Scholar 

  17. Altenbach C., Marti T., Khorana H. G., and Hubbell W. L. (1990) Transmem-brane protein structure: spin labeling of bacteriorhodopsin mutants. Science 248, 1088–1092.

    Article  PubMed  CAS  Google Scholar 

  18. Oh K. J., Zhan H., Cui C., Hideg K., Collier R. J., and Hubbell W. L. (1996) Organization of diphtheria toxin T domain in bilayers: a site-directed spin labeling study. Science 273, 810–812.

    Article  PubMed  CAS  Google Scholar 

  19. Altenbach C., Greenhalgh D., Khorana H. G., and Hubbell W. L. (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 91, 1667–1671.

    Article  PubMed  CAS  Google Scholar 

  20. Collier R. J. (1975) Diphtheria toxin: mode of action and structure. Bacteriol. Rev. 39, 54–85.

    PubMed  CAS  Google Scholar 

  21. Pappenheimer A. M., Jr. (1977) Diphtheria toxin. Annu. Rev. Biochem. 46, 69–94.

    Article  PubMed  CAS  Google Scholar 

  22. Greenfield L., Bjorn M. J., Horn G., Fong D., Buck G. A., Collier R. J., and Kaplan D. A. (1983) Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc. Natl. Acad. Sci. USA 80, 6853–6857.

    Article  PubMed  CAS  Google Scholar 

  23. Moss J., Iglewski B., Vaughan M., and Tu A. T., eds. (1995) Bacterial Toxins and Virulence Factors in Disease: Handbook of Natural Toxins, Vol. 8. Marcel Dekker New York.

    Google Scholar 

  24. Morris R. E., Gerstein A. S., Bonventre P. F., and Saelinger C. B. (1985) Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: electron microscopic evaluation. Infect. Immun. 50, 721–727.

    PubMed  CAS  Google Scholar 

  25. Naglich J. G., Metherall J. E., Russell D. W., and Eidels L. (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor. Cell 69, 1051–1061.

    Article  PubMed  CAS  Google Scholar 

  26. London E. (1992) Diphtheria toxin: membrane interaction and membrane trans-location. Biochim. Biophys. Acta 1113, 25–51.

    PubMed  CAS  Google Scholar 

  27. Tortorella D., Sesardic D., Dawes C. S., and London E. (1995) Immunochemi-cal analysis shows all three domains of diphtheria toxin penetrate across model membranes. J. Biol. Chem. 270, 27,446–27,452.

    Article  PubMed  CAS  Google Scholar 

  28. Cabiaux V., Quertenmont P., Conrath K., Brasseur R., Capiau C., and Ruysschaert J.-M. (1994) Topology of diphtheria toxin B fragment inserted in lipid vesicles. Mol. Microbiol. 11, 43–50.

    Article  PubMed  CAS  Google Scholar 

  29. Moskaug J. O., Stenmark H., and Olsnes S. (1991) Insertion of diphtheria toxin B-fragment into the plasma membrane at low pH. J. Biol. Chem. 266, 2652–2659.

    PubMed  CAS  Google Scholar 

  30. Sandvig K. and Olsnes S. (1980) Diphtheria toxin entry into cells is facilitated by low pH. J. Cell Biol. 87, 828–832.

    Article  PubMed  CAS  Google Scholar 

  31. Draper R. K. and Simon M. I. (1980) The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement. J. Cell Biol. 87, 849–854.

    Article  PubMed  CAS  Google Scholar 

  32. Kagan B. L., Finkelstein A., and Colombini M. (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer mambranes. Proc. Natl. Acad. Sci. USA 78, 4950–4954.

    Article  PubMed  CAS  Google Scholar 

  33. Wang Y., Malenbaum S. E., Kachel K., Zhan H., Collier R. J., and London E. (1997) Identification of shallow and deep membrane-penetrating forms of diphtheria toxin T domain that are regulated by protein concentration and bilayer width. J. Biol. Chem. 272, 25,091–25,098.

    Article  PubMed  CAS  Google Scholar 

  34. Kachel K., Ren J., Collier R. J., and London E. (1998) Identifying transmem-brane states and defining the membrane insertion boundaries of hydrophobic helices in membrane-inserted diphtheria toxin T domain. J. Biol. Chem. 273, 22,950–22,956.

    Article  PubMed  CAS  Google Scholar 

  35. Montecucco C., Papini E., Schiavo G., Padovan E., and Rossetto O. (1992) Ion channel and membrane translocation of diphtheria toxin. FEMS Microbiol. Immun. 105, 101–112.

    Article  Google Scholar 

  36. Madshus I. H., Wiedlocha A., and Sandvig K. (1994) Intermediates in translocation of diphtheria toxin across the plasma membrane. J. Biol. Chem. 269, 4648–4652.

    PubMed  CAS  Google Scholar 

  37. OKeefe D. O., Cabiaux V., Choe S., Eisenberg D., and Collier R. J. (1992) pH-Dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349-Lys. Proc. Natl. Acad. Sci. USA 89, 6202–6206.

    Article  PubMed  Google Scholar 

  38. Honjo T., Nishizuka Y., and Hayaishi O. (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminocyl transferase II and inhibition of protein synthesis. J. Biol. Chem. 243, 3553–3555.

    PubMed  CAS  Google Scholar 

  39. Van Ness B. G., Howard J. B., and Bodley J. W. (1980) ADP-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribo-syl-amino acid and its hydrolysis products. J. Biol. Chem. 255, 10,717–10,720.

    PubMed  Google Scholar 

  40. Zhan H., Oh K. J., Shin Y. K., Hubbell W. L., and Collier R. J. (1995) Interaction of the isolated transmembrane domain of diphtheria toxin with membranes. Biochemistry 34, 4856–4863.

    Article  PubMed  CAS  Google Scholar 

  41. Kraulis P. J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950.

    Article  Google Scholar 

  42. Bennett M. J. and Eisenberg D. (1994) Refined structure of monomeric diphtheria toxin at 2.3 Å resolution. Protein Sci. 3, 1464–1475.

    Article  PubMed  CAS  Google Scholar 

  43. Choe S., Bennett M. J., Fujii G., Curmi P. M. G., Kantardjieff K. A., Collier R. J., and Eisenberg D. (1992) The crystal structure of diphtheria toxin. Nature 357, 216–222.

    Article  PubMed  CAS  Google Scholar 

  44. Silverman J. A., Mindell J. A., Finkelstein A., Shen W. H., and Collier R. J. (1994) Mutational analysis of the helical hairpin region of diphtheria toxin trans-membrane domain. J. Biol. Chem. 269, 22,524–22,532.

    PubMed  CAS  Google Scholar 

  45. Mindell J. A., Zhan H., Huynh P. D., Collier R. J., and Finkelstein A. (1994) Reaction of diphtheria toxin channels with sulfhydryl-specific reagents: observation of chemical reactions at the single molecule level. Proc. Natl. Acad. Sci. USA 91, 5272–5276.

    Article  PubMed  CAS  Google Scholar 

  46. Silverman J. A., Mindell J. A., Zhan H., Finkelstein A., and Collier R. J. (1994) Structure-function relationships in diphtheria toxin channels: I. Determining a minimal channel-forming domain. J. Membr. Biol. 137, 17–28.

    PubMed  CAS  Google Scholar 

  47. Mindell J. A., Silverman J. A., Collier R. J., and Finkelstein A. (1994) Structure-function relationships in diphtheria toxin channels: II. A residue responsible for the channel’s dependence on trans pH. J. Membr. Biol. 137, 29–44.

    PubMed  CAS  Google Scholar 

  48. Hubbell W. L., Froncisz W., and Hyde J. S. (1987) Continuous and stopped flow EPR spectrometer based on a loop gap resonator. Rev. Sci. Instrum. 58, 1879–1886.

    Article  Google Scholar 

  49. Szoka F., Jr. and Papahadjopoulos D. (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophysics. Bioeng. 9, 467–508.

    Article  CAS  Google Scholar 

  50. Mayer L. D., Hope M. J., Cullis P. R., and Janoff A. S. (1985) Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim. Biophys. Acta 817, 193–196.

    Article  PubMed  CAS  Google Scholar 

  51. Mayer L. D., Hope M. J., and Cullis P. R. (1986) Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858, 161–168.

    Article  PubMed  CAS  Google Scholar 

  52. Böttcher C. J. F., Van Gent C. M., and Pries C. (1961) A rapid and sensitive sub-micro phosphorus determination. Anal. Chim. Acta 24, 203–204.

    Article  Google Scholar 

  53. Jost P. and Griffith O. H. (1976) Instrumental aspects of spin labeling, in Spin Labeling: Theory and Applications (Berliner L. J., ed.), Academic Press New York, pp. 251–272.

    Google Scholar 

  54. Shin Y. K. and Hubbell W. L. (1992) Determination of electrostatic potentials at biological interfaces using electron-electron double resonance. Biophys. J. 61, 1443–1453.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Joon Oh, K., Altenbach, C., Collier, R.J., Hubbell, W.L. (2000). Site-Directed Spin Labeling of Proteins. In: Holst, O. (eds) Bacterial Toxins: Methods and Protocols. Methods in Molecular Biology™, vol 145. Humana Press. https://doi.org/10.1385/1-59259-052-7:147

Download citation

  • DOI: https://doi.org/10.1385/1-59259-052-7:147

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-604-8

  • Online ISBN: 978-1-59259-052-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics