Skip to main content

Determination of Sulfur Amino Acids, Glutathione, and Related Aminothiols in Biological Samples by Gas Chromatography with Flame Photometric Detection

  • Protocol
  • 1586 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 159))

Abstract

The determination of sulfur amino acids, glutathione (GSH), and related aminothiols has been carried out by isotachophoresis (1), amino acid analyzer (AAA) (2,3), gas chromatography (GC) (48), high-performance liquid chromatography (HPLC) (932), GC-mass spectrometry (GC-MS) (33,34), liquid chromatography-mass spectrometry (LC-MS) (35), and capillary zone electrophoresis (CZE) (3638). However, isotachophoresis and AAA methods are nonselective for sulfur amino acids and lack sensitivity. GC methods based on the conversion into trimethylsilyl (4,5), neopentylidine (6), and N-trifluoroacetyl n-butyl ester (7) derivatives lack sensitivity, gives a tailing peak and requires anhydrous derivatization conditions. Although GC method based on the preparation of N-heptafluorobutyryl isobutyl or ethyl esters (8) is selective and sensitive by flame photometric detection (FPD), this method is not applied to the analysis of biological samples. As the HPLC methods, the ultraviolet (UV) (912), and the postcolumn UV derivatization with 4,4′-dithiopyridine (13) and 5,5-dithiobis (2-nitrobenzoic acid) (14), the precolumn fluorescence derivatization with 4-(aminosulfonyl)- or ammonium-7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (15,16), methyl 4-(6-methoxynaphthalene-2-yl)-4-oxo-2-butenoate (17), N-(1-pyrenyl)maleimide (18), monobromobimane (1923), o-phthaldialdehyde (24,25), 9-fluorenylmethyloxycarbonyl chloride (26), and 2-chloro-1-methylpyridinium (27), and electrochemical detection (2832) have been reported. Many of these HPLC methods were highly sensitive, but some of these methods lack specificity and require cleanup of the sample to remove the excess reagent and coexisting substances. GC-MS methods based on the conversion into tert-butyldimethylsilyl (33) and N(O,S)-propoxycarbonyl propyl ester (34) derivatives, and LC-MS method were highly sensitive and specific, but these methods require expensive equipment. Furthermore, CZE methods with electrochemical detection are capable of achieving higher separation efficiency, use less organic solvents, and require small amounts of samples in comparison with HPLC, but these methods are not applied enough to the analysis of biological samples. Current methods for the determination of sulfur amino acids, GSH, and related aminothiols have also been described in detail in refs. 3943.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mizobuchi N., Ageta T., Sasaki K., and Kodama H. (1986) Isotacho-phoretic analysis of cystine, homocystine and cystathionine in urines from patients with inborn errors of metabolism. J. Chromatog. 382, 321–325.

    Article  CAS  Google Scholar 

  2. Friedman M., Noma A. T., and Wagner J. R. (1979) Ion-exchange chromatography of sulfur amino acids on a single-column amino acid analyzer. Anal. Biochem. 98, 293–304.

    Article  PubMed  CAS  Google Scholar 

  3. Andersson A., Brattstrom L., Isaksson A., Israelsson B., and Hultberg B. (1989) Determination of homocysteine in plasma by ion-exchange chromatography. J. Clin. Lab. Invest. 49, 445–449.

    Article  CAS  Google Scholar 

  4. Caldwell K. A. and Tappel A. L. (1968) Separation by gas-liquid chromatography of silylated derivatives of some sulfo-and selenoamino acids and their oxidation products. J. Chromatog. 32, 635–640.

    Article  CAS  Google Scholar 

  5. Shahrokhi F. and Gehrke C. W. (1968) Quantitative gas-liquid chromato-graphy of sulfur containing amino acids. J. Chromatog. 36, 31–41.

    Article  CAS  Google Scholar 

  6. Jellum E., Bacon V. A., Patton W., Pereira W., Jr., and Halpern B. (1969) Quantitative determination of biologically important thiols and disulfides by gas-liquid chromatography. Anal. Biochem. 31, 339–347.

    Article  PubMed  CAS  Google Scholar 

  7. Mee J. M. L. (1973) Gas-liquid chromatographic analysis of glutathione. J. Chromatog. 87, 258–262.

    Article  CAS  Google Scholar 

  8. Bonvel S. I. and Monheimer R. H. (1980) A gas chromatographic analysis of sulfur-containing amino acids employing flame photometric detection. J. Chromatog. Sci. 18, 18–22.

    Google Scholar 

  9. Reed D. J., Babson J. R., Beatty P. W., Brodie A. E., Ellis W. W., and Potter D. W. (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal. Biochem. 106, 55–62.

    Article  PubMed  CAS  Google Scholar 

  10. DiPietra A. M., Gotti R., Bonazzi D., Andrisano V., and Cavrini V. (1994) HPLC determination of glutathione and L-cysteine in pharmaceuticals after derivatization with ethacrynic acid. J. Pharm. Biomed. Anal. 12, 91–98.

    Article  CAS  Google Scholar 

  11. Asensi M., Sastre J., Pallardo F. V., de la Asuncion J. G., Estrela J. M., and Vina J. (1994) A high-performance liquid chromatography method for measurement of oxidized glutathione in biological samples. Anal. Biochem. 217, 323–328.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshida T. (1996) Determination of reduced and oxidized glutathione in erythrocytes by high-performance liquid chromatography with ultraviolet absorbance detection. J. Chromatog. B 678, 157–164.

    Article  CAS  Google Scholar 

  13. Andersson A., Isaksson A., Brattstrom L., and Hultberg B. (1993) Homocysteine and other thiols determined in plasma by HPLC and thiol-specific postcolumn derivatization. Clin. Chem. 39, 1590–1597.

    PubMed  CAS  Google Scholar 

  14. Nozal M. J., Bernal J. L., Toribio L., Marinero P., Moral O., Manzanas L., and Rodriguez E. (1997) Determination of glutathione, cysteine and N-acetylcysteine in rabitt eye tissues using high-performance liquid chromatography and post-column derivatization with 5, 5-dithiobis(2-nitrobenzoic acid). J. Chromatog. A, 778, 347–353.

    Article  Google Scholar 

  15. Ubbink J. B., Vermaak W. J. H., and Bissbort S. (1991) Rapid high-performance liquid chromatographic assay for total homocysteine levels in human serum. J. Chromatog. 565, 441–446.

    Article  CAS  Google Scholar 

  16. Cornwell P. E., Morgan S. L., and Vaughn W. H. (1993) Modification of a high-performance liquid chromatographic method for assay of homocycteine in human plasma. J. Chromatog. 617, 136–139.

    Article  CAS  Google Scholar 

  17. Gotti R., Andrisano V., Gotti R., Cavrini V., and Candeletti S. (1994) Determination of glutathione in biological samples by high performance liquid chromatography with fluorescence detection. Biomed. Chromatogr. 8, 306–308.

    Article  PubMed  CAS  Google Scholar 

  18. Winters R. A., Zukowski J., Ercal N., Mattews R. H., and Spitz D. R. (1995) Analysis of glutathione, glutathione disulfide, cysteine, homocysteine, and other biological thiols by high-performance liquid chromatography following derivatizationby N-(1-pyrenyl)maleimide. Anal. Biochem. 227, 14–21.

    Article  PubMed  CAS  Google Scholar 

  19. Newton G. L., Dorian R., and Fahey R. C. (1981) Analysis of biological thiols: Derivatization with monobromobimane and separation by reversed-phase high-performance liquid chromatography. Anal. Biochem. 114, 383–387.

    Article  PubMed  CAS  Google Scholar 

  20. Jacobsen D. W., Gatautis V. J., and Green R. (1989) Determination of plasma homocysteine by high-performance liquid chromatography with fluorescence detection. Anal. Biochem. 178, 208–214.

    Article  PubMed  CAS  Google Scholar 

  21. Mansoor M. A., Svardal A. M., and Ueland P. M. (1992) Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal. Biochem. 200, 218–229.

    Article  PubMed  CAS  Google Scholar 

  22. Fiskerstrand T., Refsum H., Kvalheim G., and Ueland P. M. (1993) Honocysteine and other thiols in plasma and urine: Automated determination and sample stability. Clin. Chem. 39, 263–271.

    PubMed  CAS  Google Scholar 

  23. Yan C. C. and Huxtable R. J. (1995) Fluorimetric determination of monobromobimane and o-phthalaldehyde adducts of Γ-glutamylcysteine and glutathione: application to assay of Γ-glutamylcysteine synthetase activity and glutathione concentration in liver. J. Chromatog. B 672, 217–224.

    Article  CAS  Google Scholar 

  24. Fermo I., Arcelloni C., De Vecchi E., Vigano S., and Paroni R. (1992) High-performance liquid chromatographic method with fluorescence detection for the determination of total homocyst(e)ine in plasma. J. Chromatog. 593, 171–176.

    Article  CAS  Google Scholar 

  25. Paroni R., DeVecchi E., Cighetli G., Arecelloni C., Fermo I., Grossi A., and Bonini P. (1995) HPLC with o-phthalaldehyde precolumn derivatization to measure total, oxidized, and protein-bound glutathione in blood, plasma, and tissue. Clin. Chem. 41, 448–454.

    PubMed  CAS  Google Scholar 

  26. Staffeldt B., Brockmoller J., and Roots I. (1991) Determination of S-carboxymethyl-L-cysteine and some of its metabolites in urine and serum by high-performance liquid chromatography using fluorescence pre-column labelling. J. Chromatog. 571, 133–147.

    Article  CAS  Google Scholar 

  27. Sypniewski S. and Bald E. (1994) Ion-pair high-performance liquid chromatography of cysteine and metabolically related compounds in the form of their S-pyridinium derivatives. J. Chromatog. A 676, 321–330.

    Article  CAS  Google Scholar 

  28. Richie J. P. and Lang C. A. (1987) The determination of glutathione, cyst(e)ine, and other thiols and disulfides in biological samples using high-performance liquid chromatography with dual electrochemical detection. Anal. Biochem. 163, 9–15.

    Article  PubMed  CAS  Google Scholar 

  29. Carvalho F. D., Remiao F., Vale P., Timbrell J. A., Bastos M. L., and Ferreira M. A. (1994) Glutathione and cysteine measurement in biological samples by HPLC with a glassy carbon working detector. Biomed. Chromatogr. 8, 134–136.

    Article  PubMed  CAS  Google Scholar 

  30. Yang C.-S., Tsai P.-J., Chen W.-Y., Liu L., and Kuo J.-S. (1995) Determination of extracellular glutathione in livers of anaesthetized rats by microdialysis with online high-performance liquid chromatography. J. Chromatog. 667, 41–48.

    Article  CAS  Google Scholar 

  31. Kleinman W. A. and Richie J. P., Jr. (1995) Determination of thiols and disulfides using high-performance liquid chromatography with electrochemical detection. J. Chromatog. B 672, 73–80.

    Article  CAS  Google Scholar 

  32. Lakritz J., Plopper C. G., and Buckpitt A. R. (1997) Validated high-performance liquid chromatography-electrochemical method for determination of glutathione and glutathione disulfide in small tissue samples. Anal. Biochem. 247, 63–68.

    Article  PubMed  CAS  Google Scholar 

  33. Stabler S. P., Marcell P. D., Podell E. R., and Allen R. H. (1987) Quantitation of total homocysteine, total cysteine, and methionine in normal serum and urine using capillary gas chromatography-mass spectrometry. Anal. Biochem. 162, 185–196.

    Article  PubMed  CAS  Google Scholar 

  34. Sass J. O. and Endres W. (1997) Quantitation of total homocysteine in human plasma by derivatization to its N(O, S)-propoxycarbonyl propyl ester and gas chromatography-mass spectrometry. J. Chromatog. A 776, 342–347.

    Article  CAS  Google Scholar 

  35. Yu S., Sugahara K., Zhang J., Ageta T., Kodama H., Fontana M., and Dupre S. (1997) Simultaneous determination of urinary cystathionine, lanthionine, S-(2-aminoethyl)-L-cysteine and their cyclic compounds using liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization. J. Chromatog. B 698, 301–307.

    Article  CAS  Google Scholar 

  36. Lin B. L., Colon L. A., and Zare R. N. (1994) Dual electrochemical detection of cysteine and cystine in capillary zone electrophoresis. J. Chromatog. A 680, 263–270.

    Article  CAS  Google Scholar 

  37. Zhou J., O′Shea T. J., and Lunte S. M. (1994) Simultaneous detection of thiols and disulfides by capillary electrophoresis-electrochemical detection using a mixed-valence ruthenium cyanide-modified microelectrode. J. Chromatog. A 680, 271–277.

    Article  CAS  Google Scholar 

  38. Vesphalec R., Corstjens H., Billiet H. A. H., Frank J., and Luyben K. Ch. A. M. (1995) Enantiomeric separation of sulfur-and selenium-containing amino acids by capillary electrophoresis using vancomycin as a chiral selector. Anal. Chem. 67, 3223–3228.

    Article  Google Scholar 

  39. Jacoby W. B. and Griffith O. W. (eds.) (1987) Sulfur and sulfur amino acids, in Methods in Enzymology, vol. `143, Academic, London and New York.

    Google Scholar 

  40. Walker V. and Mills G. A. (1995) Quantitative methods for amino acid analysis in biological fluids. Ann. Clin. Biochem. 32, 28–57.

    PubMed  CAS  Google Scholar 

  41. Ueland P. M., Refsum H., Stabler S. P., Malinow M. R., Andersson A., and Allen R. H. (1993) Total homocysteine in plasma or serum: methods and clinical applications. Clin. Chem. 39, 1764–1779.

    PubMed  CAS  Google Scholar 

  42. Shimada K. and Mitamura K. (1994) Derivatization of thiol-containing compounds. J. Chromatog. B 659, 227–241.

    Article  CAS  Google Scholar 

  43. Zahn H. and Gattner H. G. (1997) Hair sulfur amino acid analysis. EXS 78, 239–258.

    PubMed  CAS  Google Scholar 

  44. Kataoka H., Tanaka H., Fujimoto A., Noguchi I., and Makita M. (1994) Determination of sulphur amino acids by gas chromatography with flame photometric detection. Biomed. Chromatogr. 8, 119–124.

    Article  PubMed  CAS  Google Scholar 

  45. Kataoka H., Takagi K., and Makita M. (1995) Determination of total plasma homocysteine and related aminothiols by gas chromatography with flame photometric detection. J. Chromatog. B 664, 421–425.

    Article  CAS  Google Scholar 

  46. Kataoka H., Takagi K., and Makita M. (1995) Determination of glutathione and related aminothiols by gas chromatography with flame photometric detection. Biomed. Chromatogr. 9, 85–89.

    Article  PubMed  CAS  Google Scholar 

  47. Takagi K., Kataoka H., and Makita M. (1996) Determination of glutathione and related aminothiols in mouse tissues by gas chromatography with flame photometric detection. Biosci. Biotech. Biochem. 60, 729–731.

    Article  CAS  Google Scholar 

  48. Kataoka H., Yamamoto S., and Makita M. (1984) Quantitative gas-liquid chromatography of taurine. J. Chromatog. 306, 61–68.

    Article  CAS  Google Scholar 

  49. Kataoka H., Ohnishi N., and Makita M. (1985) Electron-capture gas chromatography of taurine as its N-pentafluorobenzoyl di-n-butylamide derivative. J. Chromatog. 339, 370–374.

    Article  CAS  Google Scholar 

  50. Kataoka H., Ohishi K., and Makita M. (1986) Gas chromatographic determination of cysteic acid. J. Chromatog. 354, 482–485.

    Article  CAS  Google Scholar 

  51. Kataoka H., Yamamoto H., Sumida Y., Hashimoto T., and Makita M. (1986) Gas chromatographic determination of hypotaurine. J. Chromatog. 382, 242–246.

    Article  CAS  Google Scholar 

  52. Okazaki T., Kataoka H., Fujimoto A., Kono K., and Makita M. (1989) Determination of taurine in biological samples by GC with flame photometric detection. Bunseki Kagaku (Japanese) 38, 401–403.

    CAS  Google Scholar 

  53. Makita M., Yamamoto S., and Kono M. (1976) Gas-liquid chromatographic analysis of protein amino acids as N-isobutoxycarbonylamino acid methyl esters. J. Chromatog. 120, 129–140.

    Article  CAS  Google Scholar 

  54. Yamamoto S., Kiyama S., Watanabe Y., and Makita M. (1982) Practical gas-liquid chromatographic method for the determination of amino acids in human serum. J. Chromatog. 233, 39–50.

    Article  CAS  Google Scholar 

  55. Mills B. J., Richie J. P., Jr., and Lang C. A. (1990) Sample processing alters glutathione and cysteine values in blood. Anal. Biochem. 184, 263–267.

    Article  PubMed  CAS  Google Scholar 

  56. Kataoka H., Imamura Y., Tanaka H., and Makita M. (1993) Determination of cysteamine and cystamine by gas chromatography with flame photometric detection. J. Pharm. Biomed. Anal. 10, 963–969.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Kataoka, H., Takagi, K., Tanaka, H., Makita, M. (2001). Determination of Sulfur Amino Acids, Glutathione, and Related Aminothiols in Biological Samples by Gas Chromatography with Flame Photometric Detection. In: Cooper, C., Packer, N., Williams, K. (eds) Amino Acid Analysis Protocols. Methods in Molecular Biology™, vol 159. Humana Press. https://doi.org/10.1385/1-59259-047-0:207

Download citation

  • DOI: https://doi.org/10.1385/1-59259-047-0:207

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-656-7

  • Online ISBN: 978-1-59259-047-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics