Skip to main content

Techniques for Studying Development of Human Natural Killer Cells and T Cells

  • Protocol
Natural Killer Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 121))

Abstract

It is now commonly accepted that natural killer (NK) cells are closely related to T cells. Some severe combined immunodeficiency (SCID) patients have been described lacking T and NK cells, but having normal numbers of B and myeloid cells, suggesting a common origin of T and NK cells (1). Furthermore, T and NK cells share a number of phenotypic and functional characteristics, not present in B cells (reviewed in [2,3]). In additional, both in humans (4) and mice (5) cells have been found with T and NK cell, but no B cell, progenitor activities

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacchetta R., Vanderkerckhove B. A.E., Touraine J.-L., Bigler M., Martino S.. Gebuhrer L., de Vries J. E., Spits H., and Roncarolo M.-G. (1993) Chimerism and tolerance to host and donor in severe combined immunodeficiencies transplanted with fetal liver stem cells. J. Clin. Invest. 91, 1067–1078.

    Article  PubMed  CAS  Google Scholar 

  2. Lanier L., Spits H., and Phillips J. (1992) The developmental relationship between NK cells and T cells. Immunol. Today 13, 392–395.

    Article  PubMed  CAS  Google Scholar 

  3. Spits H., Lanier L., and Phillips J. H. (1995) Development of human T and natural killer cells. Blood 85, 2654–2670.

    PubMed  CAS  Google Scholar 

  4. Sanchez M.-J., Muench M. O., Roncarolo M. G., Lanier L., and Phillips J. H. (1994) Identification of a common T/NK cell progenitor in human fetal thymus. J. Exp.Med. 180, 569–576.

    Article  PubMed  CAS  Google Scholar 

  5. Carlyle J. R., Michie A. M., Furlonger C. Nakano T., Lenardo M. J., Paige C. J., and Zuniga-Pflücker J. (1997) Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J.Exp. Med. 186, 173–182.

    Article  PubMed  CAS  Google Scholar 

  6. Rodewald H. R., Moingeon P., Lucich J. L., Dosiou C., Lopez P., and Reinherz E.L. (1992) A population of early fetal thymocytes expressing Fc γ RII/III contains precursors of T lymphocytes and natural killer cells. Cell. 69, 139–150.

    Article  PubMed  CAS  Google Scholar 

  7. Sanchez M. J., Spits H., Lanier L. L., and Philips J. H. (1993) Human natural killer cell committed thymocytes and their relationship to the T cell lineage. J. Exp. Med. 178, 1857–1866

    Article  PubMed  CAS  Google Scholar 

  8. Barcena A., Galy A. H. M., Punnonen J., Muench M. O., Schols D., Roncarola M. G., de Vries J. E., and Spits H. (1994) Lymphoid and myeloid differentiation of fetal liver CD34+ lineage-cells in human thymic organ culture. J. Exp. Med. 180, 123–132.

    Article  PubMed  CAS  Google Scholar 

  9. Phillips J. H., Hori T., Nagler A., Bhat N., Spits H., and Lanier L. L. (1992) Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins. J.Exp. Med. 175, 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  10. Lotzova E., Savary C, and Champlin R. E. (1993) Genesis of human oncolytic natural killer cells from primitive CD34+CD33- bone marrow progenitors. J. Immunol. 150, 5263–5269.

    PubMed  CAS  Google Scholar 

  11. Miller J. S., Verfaille C, and McGlave P. M. (1992) The generation of human natural killer cells from CD34+/DR- primitive progenitors in long-term bone marrow culture. Blood 80, 2182–2187.

    PubMed  CAS  Google Scholar 

  12. Silva M. G. R., Hoffman R., Srour E. F., and Ascenso J. L. (1994) Generation of human natural killer cells from immature progenitors does not require marrow stromal cells. Blood 84, 841–847.

    PubMed  CAS  Google Scholar 

  13. Shibuya A., Nagayoshi K., Nakamura K., and Nakauchi H. (1995) Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood 85, 3538–3546.

    PubMed  CAS  Google Scholar 

  14. Jaleco A. C, Blom B., Res P., Weijer K., Lanier L. L., Phillips J. H., and Spits H. (1997) Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells. J. Immunol. 159, 694–702.

    PubMed  CAS  Google Scholar 

  15. Manoussaka M., Georgiou A., Rossiter B., Shrestha S., Toomey J. A., Sivakumar P. V., Bennett M., Kumar V., and Brooks C. G. (1997) Phenotypic and functional characterization of long-lived NK cell lines of different maturational status obtained from mouse fetal liver. J. Immunol. 158, 112–119.

    PubMed  CAS  Google Scholar 

  16. Giri J. G., Anderson D. M., Kumaki S., Park L. S., Grabstein K. H., and Cosman D. (1995) IL-15, a novel T cell growth factor that shares activities and receptor components with IL-2. J. Leukoc. Biol. 5745 763–766.

    Google Scholar 

  17. Kundig T. M., Schorle H., Bachmann M. F., Hengartner H., Zinkernagel R. M., and Horak I. (1993) Immune responses in interleukin-2-deficient mice. Science 262, 1059–1061.

    Article  PubMed  CAS  Google Scholar 

  18. Mrozek E., Anderson P., and Caligiuri M. A. (1996) Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87, 2632–2640.

    PubMed  CAS  Google Scholar 

  19. Puzanov I. J., Bennett M., and Kumar V. (1996) IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J.Immunol. 157, 4282–4285.

    PubMed  CAS  Google Scholar 

  20. Leclercq G., Debacker V., de S. M., and Plum J. (1996) Differential effects ofinterleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J. Exp. Med. 184, 325–336

    Article  PubMed  CAS  Google Scholar 

  21. Heemskerk M. H. M., Blom B., Nolan G., Stegmann A. P. A., Bakker A. Q., Weijer K., Res P. C. M., and Spits H. (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186, 1597–1602.

    Article  PubMed  CAS  Google Scholar 

  22. Yssel H., De Vries J.E., Koken M., van Blitterswijk W., and Spits H. (1984) Serum-free medium for the generation and the propagation of functional human cytotoxic and helper T cell clones. J. Immunol Methods 72, 219–227.

    Article  PubMed  CAS  Google Scholar 

  23. Lanier L. L. and Recktenwald D. J. (1991) Multicolor immunofluorescence and flow cytometry. Methods: A Companion to Methods in Enzymology 2, 192–199.

    Article  CAS  Google Scholar 

  24. Lanier L. L., Chang C, and Phillips J. H. (1994) Human NKR-P1A. A disul-fide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol. 153, 2417–2428.

    PubMed  CAS  Google Scholar 

  25. Perez Villar J. J., Melero I., Rodriguez A., Carretero M., Aramburu J., Sivori S., Orengo A. M., Moretta A., and Lopez Botet M. (1995) Functional ambivalence of the Kp43 (CD94) NK cell-associated surface antigen. J. Immunol. 154, 5779–5788.

    PubMed  CAS  Google Scholar 

  26. Miller J. S., Alley K. A., and McGlave P. (1994) Differentiation of natural killercells from human primitive marrow progenitors in a stroma-based long-term culture system: Identification of a CD34+7+ NK progenitor. Blood 83, 2594–2601.

    PubMed  CAS  Google Scholar 

  27. Res P., Martínez Cáceres E., Jaleco A. C, Noteboom E., Weijer K., and Spits H. (1996) CD34+CD38dim cells in the human thymus can differentiate into T, Natural killer and dendritic cells but are distinct from stem cells. Blood 87, 5196–5206.

    PubMed  CAS  Google Scholar 

  28. Res P., Blom B., Hori T., Weijer K., and Spits H. (1997) Downregulation of CD1 marks acquisition of functional maturation of human thymocytes and defines a con-trol point in late stages of human T cell development. J. Exp. Med. 185, 141–151.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Spits, H., Res, P., Jaleco, AC. (1999). Techniques for Studying Development of Human Natural Killer Cells and T Cells. In: Campbell, K.S., Colonna, M. (eds) Natural Killer Cell Protocols. Methods in Molecular Biology, vol 121. Humana Press. https://doi.org/10.1385/1-59259-044-6:25

Download citation

  • DOI: https://doi.org/10.1385/1-59259-044-6:25

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-683-3

  • Online ISBN: 978-1-59259-044-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics