Skip to main content

Intercellular Calcium Signaling and Flash Photolysis of Caged Compounds

A Sensitive Method to Evaluate Gap Junctional Coupling

  • Protocol
Connexin Methods and Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 154))

Abstract

Communication is a fundamental paradigm of multicellular systems, and neighboring cells can exchange signals either by paracrine or juxtacrine communication (1). In addition, cells that are coupled by gap junctions can communicate by the passage of electrical signals or by the diffusion of messenger molecules or ions through these junctions. Cardiac myocytes are extensively coupled by gap junctions to form a functional syncytium and are a good example of cells that communicate by electrical signals. Examples of nonexcitable, gap junctional coupled cells that communicate by the diffusion of intracellular messengers or ions are glial cells (2,3), airway epithelial cells (4,5), lens epithelial cells (6,7), hepatocytes (8,9), and endothelial cells (10,11). In these cells, propagating increases in intracellular free Ca2 ± concentration ([Ca2+]i) spread in all directions and over many rows of cells to form intercellular Ca2+ waves, and these are believed to form a major mechanism of cell communication (12).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimmerman G. A., Lorant D. E., McIntyre T. M., and Prescott S. M. (1993) Juxtacrine intercellular signaling: another way to do it. Am. J. Respir. Cell Mol. Biol. 9, 573–577.

    PubMed  CAS  Google Scholar 

  2. Giaume C. and McCarthy K. D. (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci. 19, 319–325.

    Article  PubMed  CAS  Google Scholar 

  3. Charles A. C. (1998) Intercellular calcium waves in glia. Glia 24, 39–49.

    Article  PubMed  CAS  Google Scholar 

  4. Sanderson M. J., Chow I., and Dirksen E. R. (1988) Intercellular communication between ciliated cells in culture. Am. J. Physiol. 254, C63–C74.

    PubMed  CAS  Google Scholar 

  5. Sanderson M. J., Charles A. C., and Dirksen E. R. (1990) Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul. 1, 585–596.

    PubMed  CAS  Google Scholar 

  6. Goodenough D. A. (1992) The crystalline lens. A system networked by gap junctional intercellular communication. Semin. Cell Biol. 3, 49–58.

    Article  PubMed  CAS  Google Scholar 

  7. Churchill G. and Louis C. (1998) Roles of Ca2+, inositol trisphosphate and cyclic ADP-ribose in mediating intercellular Ca2+ signaling in sheep lens cells. J. Cell Sci. 111, 1217–1225.

    PubMed  CAS  Google Scholar 

  8. Spray D. C., Bai S., Burk R. D., and Saez J. C. (1994) Regulation and function of liver gap junctions and their genes. Prog. Liver Dis. 12, 1–18.

    PubMed  CAS  Google Scholar 

  9. Frame M. K. and Defeijter A. W. (1997) Propagation of mechanically induced intercellular calcium waves via gap junctions and ATP receptors in rat liver epithelial cells. Exp. Cell Res. 230, 197–207.

    Article  PubMed  CAS  Google Scholar 

  10. Dejana E., Corada M., and Lampugnani M. G. (1995) Endothelial cell-to-cell junctions. FASEB J. 9, 910–918.

    PubMed  CAS  Google Scholar 

  11. Demer L. L., Wortham C. M., Dirksen E. R., and Sanderson M. J. (1993) Mechanical stimulation induces intercellular calcium signaling in bovine aortic endothelial cells. Am. J. Physiol. 264, H2O94–H2102.

    Google Scholar 

  12. Sanderson M. J. (1996) Intercellular waves of communication. News Physiol. Sci. 11, 262–269.

    Google Scholar 

  13. Cornell-Bell A. H., Finkbeiner S. M., Cooper M. S., and Smith S. J. (1990) Glutamate induces calcium waves in cultured astrocytes: long range glial signaling. Science 247, 470–473.

    Article  PubMed  CAS  Google Scholar 

  14. Dani J. W., Chernjavsky A., and Smith S. J. (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429–440.

    Article  PubMed  CAS  Google Scholar 

  15. D’Andrea P. and Vittur F. (1997) Propagation of intercellular Ca2+ waves in mechanically stimulated articular chondrocytes. FEBS Lett. 400, 58–64.

    Article  CAS  Google Scholar 

  16. Newman E. A. and Zahs K. R. (1997) Calcium waves in retinal glial cells. Science 275, 844–847.

    Article  PubMed  CAS  Google Scholar 

  17. Venance L., Stella N., Glowinsky J., and Giaume C. (1997) Mechanismsinvolved in initiation and propagation of receptor-induced intercellular calcium signaling in cultured rat astrocytes. J. Neurosci. 17, 1981–1992.

    PubMed  CAS  Google Scholar 

  18. Nedergaard M. (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  19. Hassinger T. D., Guthrie T. D., Atkinson P. B., Bennett M. V. L., and Kater S. B. (1996) An extracellular signaling component in propagation of astrocytic calcium waves. Proc. Natl. Acad. Sci. USA 93, 13,268–13,273.

    Article  PubMed  CAS  Google Scholar 

  20. Boitano S., Dirksen E. R., and Sanderson M. J. (1992) Intercellular propagation of calcium waves mediated by inositol trisphosphate. Science 258, 292–295.

    Article  PubMed  CAS  Google Scholar 

  21. Hansen M., Boitano S., Dirksen E. R., and Sanderson M. J. (1993) Intercellular calcium signaling induced by extracellular ATP and mechanical stimulation in airway epithelial cells. J. Cell Sci. 106, 995–1004.

    PubMed  CAS  Google Scholar 

  22. Sanderson M. J., Charles A. C., Boitano S., and Dirksen E. R. (1994) Mechanisms and function of intercellular calcium signaling. Mol. Cell. Endocrinol. 98, 173–187.

    Article  PubMed  CAS  Google Scholar 

  23. Sanderson M. J. (1995) Intercellular calcium waves mediated by inositol trisphosphate. Ciba Found. Symp. 188, 175–189.

    PubMed  CAS  Google Scholar 

  24. Young S. H., Ennes H. S., and Mayer E. A. (1996) Propagation of calcium waves between colonic smooth muscle cells in culture. Cell Calcium 20, 257–271.

    Article  PubMed  CAS  Google Scholar 

  25. Sanderson M. J., Paemeleire K., Strahonja A., and Leybaert L. (1998) Intercellular calcium signaling between glial and endothelial cells, in Gap Junctions (Werner R., ed.), IOS Press, Amsterdam, pp. 261–265.

    Google Scholar 

  26. Leybaert L., Paemeleire K., Strahonja A., and Sanderson M. J. (1998) Inositol trisphosphate dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24, 398–407.

    Article  PubMed  CAS  Google Scholar 

  27. Charles A. C., Dirksen E. R., Merril J. E., and Sanderson M. J. (1993) Mechanisms of intercellular calcium signaling in glial cells studied with dantrolene and thapsigargin. Glia 7, 134–145.

    Article  PubMed  CAS  Google Scholar 

  28. Charles A. C., Naus C. C., Zhu D., Kidder G. M., Dirksen E. R., and Sanderson M. J. (1992) Intercellular calcium signaling via gap junctions in glioma cells. J. CellBiol. 118, 195–201.

    Article  CAS  Google Scholar 

  29. Evans J. and Sanderson M. J. (1998) Intercellular calcium oscillations induced by ATP in airway epithelial cells. Am J. Physiol. 277, L30–L41.

    Google Scholar 

  30. Stranhonja A. and Sanderson M. J. (1998) Intracellular Ca2+ oscillations induced in glia by intercellular Ca2+ waves. Glia 28, 97–113.

    Article  Google Scholar 

  31. Allbritton N. L., Meyer T., and Stryer L. (1992) Range of messenger action of calcium ions and inositol 1,4,5-trisphosphate. Science 258, 1812–1815.

    Article  PubMed  CAS  Google Scholar 

  32. Yule D. I., Stuenkel E., and Williams J. A. (1996) Intercellular calcium waves in rat pancreatic acini: mechanism of transmission. Am. J. Physiol. 271, C1285–C1294.

    PubMed  CAS  Google Scholar 

  33. Lechleiter J. D. and Clapham D. E. (1992) Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69, 283–294.

    Article  PubMed  CAS  Google Scholar 

  34. Lee H. C. (1997) Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol. Rev. 77, 1133–1164.

    PubMed  CAS  Google Scholar 

  35. Osipchuk Y. and Cahalan M. (1992) Cell-to-cell spread of calcium signals mediated by ATP recptors in mast cells. Nature 359, 241–244.

    Article  PubMed  CAS  Google Scholar 

  36. Cao D., Lin G., Westphale E. M., Beyer E. C., and Steinberg T. H. (1997) Mechanisms for the coordination of intercellular calcium signaling in insulinsecreting cells. J. Cell Sci. 110, 497–504.

    PubMed  CAS  Google Scholar 

  37. Jorgensen N. R., Geist S. T., Civitelli R., and Steinberg T. H. (1997) ATP-and gap junction-dependent intercellular calcium signaling in osteoblastic cells. J. Cell Biol. 139, 497–506.

    Article  PubMed  CAS  Google Scholar 

  38. Paemeleire K., de Hemptinne A., and Leybaert L. ( 1998) Traumatic single cell injury to astrocytes causes ATP-dependent astrocyte-endothelial Ca2+ signalling. Pflügers Arch. 435, R244.

    Google Scholar 

  39. Cotrina M. L., Lin J. H. C., Alves-Rodrigues A., Liu S., Li J., Azmi-Ghadimi H., Kang J., Naus C. C. G., and Nedergaard M. (1998) Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95, 15,735–15,740.

    Article  PubMed  CAS  Google Scholar 

  40. Giaume C. and Venance L. (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24, 50–64.

    Article  PubMed  CAS  Google Scholar 

  41. Kaplan J. H. and Somlyo A. P. (1989) Flash photolysis of caged compounds: new tools for cellular physiology. Trends Neurosci. 12, 54–59.

    Article  PubMed  CAS  Google Scholar 

  42. Ellis-Davies G. C. and Kaplan J. H. (1994) Nitrophenyl-EGTA, a photolabile chelator that selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc. Natl. Acad. Sci. USA 91, 187–191.

    Article  PubMed  CAS  Google Scholar 

  43. Li W., Llopis J., Whitney M., Zlokarnik G., and Tsien R. Y. (1998) Cellpermeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941.

    Article  PubMed  CAS  Google Scholar 

  44. Lipp P., Luscher C., and Niggli E. (1996) Photolysis of caged compounds characterized by ratiometric confocal microscopy: a new approach to homogeneously control and measure the calcium concentration in cardiac myocytes. Cell Calcium 19, 255–266.

    Article  PubMed  CAS  Google Scholar 

  45. Kirby M. S., Hadley R. W., and Lederer W. J. (1994) Measurement of intracellular Ca2+ concentration using Indo-1 during simultaneous flash photolysis to release Ca2+ from DM-nitrophen. Pflügers Arch. 427, 169–177.

    Article  PubMed  CAS  Google Scholar 

  46. Leybaert L., Paemeleire K., and Sanderson M. J. (1998) Inositol trisphosphate dependent calcium signaling and gap junctional coupling in and between astrocytes and endothelial cells. Soc. Neurosci. Abstr. 24, 266.

    Google Scholar 

  47. Leybaert L., Paemeleire K., D’Herde K., and Sanderson M. J. (1998) Inositol trisphosphate dependent calcium signaling and gap junctional coupling in and between astrocytes and endothelial cells in co-culture. Pflügers Arch. 436, R29.

    Google Scholar 

  48. Berridge M. J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315–325.

    Article  PubMed  CAS  Google Scholar 

  49. McCarthy K. D. and de Vellis J. ( 1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell. Biol. 85, 890–902.

    Article  PubMed  CAS  Google Scholar 

  50. McNeil P. L., Murphy R. F., Lanni F., and Taylor D. L. (1984) A method forincorporating macromolecules into adherent cells. J. Cell Biol. 98, 1556–1564.

    Article  PubMed  CAS  Google Scholar 

  51. El-Fouly M. H., Trosko J. E., and Chang C. C. (1987) Scrape-loading and dyetransfer. A rapid and simple technique to study gap junctional intercellular com-munication. Exp. Cell Res. 168, 422–430.

    Article  PubMed  CAS  Google Scholar 

  52. Giaume C., Marin P., Cordier J., Glowinski J., and Prémont J. (1991) Adrenergic regulation of intercellular communication between cultured astrocytes fromthe mouse. Proc. Natl. Acad. Sci. USA 88, 5577–5581.

    Article  PubMed  CAS  Google Scholar 

  53. Vera B., Sanchez-Abarca L. I., Bolanos J. P., and Medina J. M. (1996) Inhibition of astrocyte gap junctional communication by ATP depletion is reversed bycalcium sequestration. FEBS Lett. 392, 225–229.

    Article  PubMed  CAS  Google Scholar 

  54. Bolanos J. P. and Medina J. M. (1996) Induction of nitric oxide synthase inhibitsgap junction permeability in cultured rat astrocytes. J. Neurochem. 66, 2091–2099.

    Article  PubMed  CAS  Google Scholar 

  55. Lavado E., Sanchez-Abarca L. I., Tabernero A., Bolanos J. P., and Medina J. M. (1997) Oleic acid inhibits gap junction permeability and increases glucose uptake in cultured astrocytes. J. Neurochem. 69, 721–728.

    Article  PubMed  CAS  Google Scholar 

  56. Neumann E., Schaefer-Ridder M., Wang Y., and Hofschneider P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    PubMed  CAS  Google Scholar 

  57. Tsong T. Y. (1991) Electroporation of cell membranes. Biophys. J. 60, 297–306.

    Article  PubMed  CAS  Google Scholar 

  58. Weaver J. C. (1993) Electroporation: a general phenomenon for manipulating cells and tissues. J. Cell. Biochem. 51, 426–435.

    PubMed  CAS  Google Scholar 

  59. Weaver J. C. (1995) Electroporation theory. Concepts and mechanisms. Methods Mol. Biol. 55, 3–28.

    PubMed  CAS  Google Scholar 

  60. Chang D. C. (1989) Cell poration and cell fusion using an oscillating electric field. Biophys. J. 56, 641–652.

    Article  PubMed  CAS  Google Scholar 

  61. Rapp G. (1998) Flash lamp-based irradiation of caged compounds. Methods Enzymol. 291, 202–222.

    Article  PubMed  CAS  Google Scholar 

  62. Parker I., Callamaras N., and Wier W. G. (1997) A high-resolution, confocal laser-scanning microscope and flash photolysis system for physiological studies. Cell Calcium 21, 441–452.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Leybaert, L., Sanderson, M.J. (2001). Intercellular Calcium Signaling and Flash Photolysis of Caged Compounds. In: Bruzzone, R., Giaume, C. (eds) Connexin Methods and Protocols. Methods In Molecular Biology™, vol 154. Humana Press. https://doi.org/10.1385/1-59259-043-8:407

Download citation

  • DOI: https://doi.org/10.1385/1-59259-043-8:407

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-658-1

  • Online ISBN: 978-1-59259-043-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics