Skip to main content

RNA Probes for the Analysis of Gene Expression

  • Protocol
The Nucleic Acid Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 147 Accesses

Abstract

The isolation and characterization of RNA polymerases from the Salmonella phage SP6 and the E. coli phages T7 and T3 has revolutionized all aspects of the study of RNA metabolism (16). Indeed, it is now possible to generate unlimited quantities of virtually any RNA molecule in a chemically pure form. This technology is based on a number of properties of the viral transcription units. First, and in contrast to their cellular counterparts, the enzymes are single-chain proteins that were easily purified from phage-infected cells and are now produced by recombinant DNA technology. Second, they very specifically recognize their own promoters (7 and references therein), which are contiguous 17–20-bp-long sequences rarely encountered in bacterial, plasmid, or eukaryotic sequences. Third, the enzymes are highly processive, allowing the efficient synthesis of very long transcripts from DNA templates. In this chapter, the preparation of the DNA templates, the transcription from the templates of labeled synthetic RNA molecules, commonly called riboprobes, and their use in Northern and RNase protection assays are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler, E. T. and Chamberlin, M. J. (1984) Bacteriophage SP6-specific RNA polymerase. J. Biol. Chem. 257, 5772–5788.

    Google Scholar 

  2. Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R. (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12, 7035–7056.

    Article  PubMed  CAS  Google Scholar 

  3. Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, F. W. (1984) Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 81, 2035–2039.

    Article  PubMed  CAS  Google Scholar 

  4. Krieg, P. A. and Melton, D. A. (1987) In vitro RNA synthesis with SP6 RNA polymerase. Methods Enzymol. 155, 397–415.

    Article  PubMed  CAS  Google Scholar 

  5. Yisraeli, J. K. and Melton, D. A. (1989) Synthesis of long, capped transcripts in vitro by SP6 and T7 RNA polymerases. Methods Enzymol 180, 42–50.

    Article  PubMed  CAS  Google Scholar 

  6. Milligan, J. F. and Uhlenbeck, O. C. (1989) Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  7. Breaker, R. B., Banerji, A., and Joyce, G. F. (1994) Continuous in vitro evolution of bacteriophage RNA polymerase promoters. Biochemistry 33, 11,980–11,986.

    Article  PubMed  CAS  Google Scholar 

  8. Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798.

    Article  PubMed  CAS  Google Scholar 

  9. Roitsch, T. and Lehle, L. (1989) Requirements for efficient in vitro transcription and translation: a study using yeast invertase as a probe. Biochim. Biophys. Acta 1009, 19–26.

    Article  PubMed  CAS  Google Scholar 

  10. Schenbon, E. T. and Mierendorf, R. C. (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res. 13, 6223–6234.

    Article  Google Scholar 

  11. Nam, S. C. and Kang, C. (1988) Transcription initiation site selection and abortive initiation cycling of phage SP6 RNA polymerase. J. Biol. Chem. 263, 18,123–18,127.

    PubMed  CAS  Google Scholar 

  12. Solazzo, M., Spinelli, L., and Cesareni, G. (1987) SP6 RNA polymerase: sequence requirements downstream from the transcription start site. Focus 10, 11,12.

    Google Scholar 

  13. Stump, W. T. and Hall, K. B. (1993) SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates. Nucleic Acids Res. 21, 5480–5484.

    Article  PubMed  CAS  Google Scholar 

  14. Moreau, G. (1991) RNA binding properties of the Xenopus LA proteins. Ph. D. dissertation, University of Geneva, Switzerland.

    Google Scholar 

  15. Taylor, D. R. and Mathews, M. B. (1993) Transcription by SP6 RNA polymerase exhibits an ATP dependence that is influenced by promoter topology. Nucleic Acids Res. 21, 1927–1933.

    Article  PubMed  CAS  Google Scholar 

  16. Sappino, A.-P., Huarte, J., Belin, D., and Vassalli, J.-D. (1989) Plasminogen activators in tissue remodeling and invasion: mRNA localization in mouse ovaries and implanting embryos. J. Cell Biol. 109, 2471–2479.

    Article  PubMed  CAS  Google Scholar 

  17. Jostarndt, K., Puntschart, A., Hoppeler, H., and Billeter, R. (1994) The use of [33P]-labeled riboprobes for in situ hybridizations: localization of myosin light chain mRNAs in adult human skeletal muscle. Histochem. J. 26, 32–40.

    PubMed  CAS  Google Scholar 

  18. Dorries, U., Bartsch, U., Nolte, C., Roth, J., and Schachner, M. (1993) Adaptation of a non-radioactive in situ hybridization method to electron microscopy: detection of tenascin mRNA in mouse cerebellum with digoxigenin-labeled probes and gold-labeled antibodies. Histochemistry 99, 251–262.

    Article  PubMed  CAS  Google Scholar 

  19. Kriegsmann, J., Keyszer, G., Geiler, T., Gay, R. E., and Gay, S. (1994) A new double labeling technique for combined in situ hybridization and immunohistochemical analysis. Lab. Invest. 71, 911–917.

    PubMed  CAS  Google Scholar 

  20. Egger, D., Troxler, M., and Bienz, K. (1994) Light and electron microscopic in situ hybridization: non-radioactive labeling and detection, double hybridization, and combined hybridization-immunocytochemistry. J. Histochem. Cytochem. 42, 815–822.

    Article  PubMed  CAS  Google Scholar 

  21. Pokrovskaya, I. D. and Gurevich, V. V. (1994) In vitro transcription: preparative RNA yields in analytical scale reactions. Anal. Biochem. 220, 420–423.

    Article  PubMed  CAS  Google Scholar 

  22. Krieg, P. A. (1991) Improved synthesis of full length RNA probe at reduced incubation temperatures. Nucleic Acids Res. 18, 6463.

    Article  Google Scholar 

  23. Belin, D., Mudd, E. A., Prentki, P., Yi-Yi, Y., and Krisch, H. M. (1987) Sense and antisense transcription of bacteriophage T4 gene 32. J. Mol. Biol. 194, 231–243.

    Article  PubMed  CAS  Google Scholar 

  24. Mead, D. A., Szesna-Skorupa, E., and Kemper, B. (1986) Single-stranded DNA blue T7 promoter plasmids. Protein Eng. 1, 67–74.

    Article  PubMed  CAS  Google Scholar 

  25. Macdonald, L. E., Durbin, R. K., and McAllister, W. T. (1994) Characterisation of two types of termination signals for bacteriophage T7 RNA polymerase. J. Mol. Biol. 238, 145–158.

    Article  PubMed  CAS  Google Scholar 

  26. Curran, J., Marq, J. B., and Kolakofsky, D. (1992) The Sendai virus nonstructural C proteins specifically inhibit viral mRNA synthesis. Virology 189, 647–656.

    Article  PubMed  CAS  Google Scholar 

  27. Hod, Y. (1992) A simplified ribonuclease protection assay. Biotechniques 13, 852–853.

    PubMed  CAS  Google Scholar 

  28. Lau, E. T., Kong, R. Y. C., and Cheah, K. S. E. (1993) A critical assessment of the RNase protection assay as a means of determining exon sizes. Anal. Biochem. 209, 360–366.

    Article  PubMed  CAS  Google Scholar 

  29. Belin, D., Wohlwend, A., Schleuning, W.-D., Kruithof, E. K. O., and Vassalli, J.-D. (1989) Facultative polypeptide translocation allows a single mRNA to encode the secreted and cytosolic forms of plasminogen activators inhibitor 2. EMBO J. 8, 3287–3294.

    PubMed  CAS  Google Scholar 

  30. Vassalli, J.-D., Huarte, J., Bosco, D., Sappino, A.-P., Sappino, N., Velardi, A., Wohlwend, A., Erno, H., Monard, D., and Belin, D. (1993) Protease-nexin I as an androgen-dependent secretory product of the murine seminal vesicle. EMBO J. 12, 1871–1878.

    PubMed  CAS  Google Scholar 

  31. Lyakhov, D. L., He, B., Zhang, X., Studier, F. W., Dunn, J. J., and McAllister, W. T. (1997) Mutant bacteriophage T7 RNA polymerases with altered termination properties. J. Mol. Biol 269, 28–40.

    Article  PubMed  CAS  Google Scholar 

  32. Scott, P. A. E., Smith, K., Bichmel, R., and Harris, A. L. (1977) Reliable external control for RNase protection assays. Nucleic Acids Res. 95, 1305–1306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Belin, D. (2000). RNA Probes for the Analysis of Gene Expression. In: Rapley, R. (eds) The Nucleic Acid Protocols Handbook. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-038-1:181

Download citation

  • DOI: https://doi.org/10.1385/1-59259-038-1:181

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-459-4

  • Online ISBN: 978-1-59259-038-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics