Skip to main content

Characterizing Microorganisms in the Environment by Fatty Acid Analysis

  • Protocol

Part of the book series: Methods in Biotechnology ((MIBT,volume 12))

Abstract

Determining the taxonomic composition, biomass, and physiological status of microbial assemblages is still one of the greatest challenges facing microbial ecologists. There are many reasons why assessment of microbes in the environment is so demanding, not least their number, diversity, and limited size. Unlike eukaryotes, descriptions of the morphology of prokaryotes usually yields little or no information concerning the phylogenetic affiliation or ecological role of organisms. Consequently, although direct observations can provide an indication of biomass, they do not allow the investigator to distinguish among the many microbial populations present in samples. Classical approaches that utilize enrichment methods for the isolation of microorganisms from the environment continue to provide valuable information in biochemical, taxonomic, and autoecological studies. The primary limitations to such approaches are those of nonculturability (the active cellular component that cannot be grown in the laboratory on artificial media), and the problem of characterizing and identifying statistically relevant numbers of isolates necessary to gain insight into the population ecology and community diversity of any but the simplest of habitats. Furthermore, these approaches rarely provide information on microbial assemblages in situ.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Amman, R. I., Ludwig, W., and Schleifer, K.-H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169

    Google Scholar 

  2. Findlay, R. H. and Dobbs, F. C. (1993) Quantitative description of microbial communities using lipid analysis, in Handbook of Methods in Aquatic Microb. Ecol. (Kemp, P. F., Sherr, B. F., Sherr, E. B., and Cole, J. J., eds.), Lewis Publishers, Boca Raton, FL, pp. 271–284.

    Google Scholar 

  3. Heuer, H. and Smalla, K. (1997) Application of DGGE and TGGE for studying microbial communities, in Modern Soil Microbiology (van Elsas, J. D., Wellington, E. M. H., and Trevors, J. T., eds.), Marcel Dekker, New York, pp. 353–373.

    Google Scholar 

  4. White, D. C., Pinkart, H. C., and Ringleberg, D. B. (1997) Biomass measurements: biochemical approaches, in Manual of Environmental Microbiology (Hurst, C. J., Knudsen, G. R., McInerney, M. J., Stetzenbach, L. D. and Walter, M. V., eds.), ASM, Washington, DC, pp. 91–101.

    Google Scholar 

  5. Suzuki, K., Goodfellow, M., and O’Donnell, A. G. (1993) Cell envelopes and classification, in Handbook of New Bacterial Systematics (Goodfellow, M. and O’Donnell, A. G. eds.), Academic, London, pp. 195–250.

    Google Scholar 

  6. Komagata, K. and Suzuki, K. (1987) Lipid and cell wall analysis in bacterial systematics. Meth. Microbiol. 19, 161–207.

    CAS  Google Scholar 

  7. Kroppenstedt, R. M. (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms, in Chemical Methods in Bacterial Systematics (Goodfellow, M. and Minnikin, D. E., eds.), Academic, London, pp. 173–199.

    Google Scholar 

  8. Goodfellow, M. 1989 Supragenic classification of actinomycetes, in Bergey’s Manual of Systematic Bacteriology (Williams, S. T., Sharpe M. E., and Holt J. G., eds.) Williams and Wilkins, Baltimore, pp. 2333–2339.

    Google Scholar 

  9. Komagata, K. and Suzuki, K. (1987) Lipid and cell wall analysis in bacterial sytematics. Methods Microbiol. 19, 161–207

    CAS  Google Scholar 

  10. Collins, M. D. (1985) Isoprenoid quinone analyses in bacterial classifications and identification, in Chemical Methods in Bacterial Systematics (Goodfellow M. and Minnikin D. E., eds.), Academic, London, pp. 267–287.

    Google Scholar 

  11. Frostegård, A., Tunlid, A., and Baath, E. (1993) Phospholipid fatty acid composition biomass, and activity of microbial communities from two soil types experimentally exposed to two different heavy metals. Appl. Environ. Microbiol. 59, 3605–3617.

    Google Scholar 

  12. Bligh, E. G. and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 31, 179–184.

    Google Scholar 

  13. Petersen, S. O. and Klug, M. J. (1994) Effects of sieving, storage and incubation temperature on the phospholipid fatty acid profile of a soil microbial community. Appl. Environ. Microbiol. 60, 2421–2430.

    CAS  Google Scholar 

  14. Frostegård, A., Tunlid, A., and Baath, E. (1991) Microbial biomass measured as total lipid phosphate in soils of different organic content. J. Microbiol. Methods 14, 151–163.

    Article  Google Scholar 

  15. Guckert, J. B., Hood, M. A., and White, D. C. (1986) Phospholipid, ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increase in trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52, 794–801.

    CAS  Google Scholar 

  16. Dowling, N. J., Widdel, F., and White, D. C. (1986) Phospholipid ester linked fatty acids biomarkers of acetate oxidising sulphate reducers and other sulphide forming bacteria. J. Gen. Microbiol. 132, 1815–1825.

    CAS  Google Scholar 

  17. Welch, D. F. (1991) Applications of cellular fatty acid analysis. Clin. Microbiol. Rev. 4, 422–438.

    CAS  Google Scholar 

  18. Lambert, M. and Moss, C. W. (1983) Comparison of the effect of acid and base hydrolysis and cyclopropane fatty acids in bacteria. J. Clin. Microbiol. 18, 1370–1377.

    CAS  Google Scholar 

  19. Moss, C. W. (1981) Gas-liquid chromatography as an analytical tool in microbiology. J. Chromatogr. 203, 337–347.

    Article  CAS  Google Scholar 

  20. Moss, C. W., Lambert, M. A., and Lombard, G. L. (1977) Cellular fatty acids of Peptococcus variabilis and Peptostreptococcus anaerobius. J. Clin. Microbiol. 5, 665–667.

    CAS  Google Scholar 

  21. Miller, L. T. (1982) Single derivatisation method for routine analysis of bacterial esters, including hydroxy acids. J. Clin. Microbiol. 16, 584–586.

    CAS  Google Scholar 

  22. Sasser, M. (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Tech. note 101. MIDI, Newark, DE.

    Google Scholar 

  23. Moss, C. W., Dees, S. B., and Guerrant, G. O. (1980) Gas-liquid chromatography of bacterial fatty acids with fused silica capillary column. J. Clin. Microbiol. 12, 127–130.

    CAS  Google Scholar 

  24. Kaneda, T. (1991) Iso-and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55, 288–302.

    CAS  Google Scholar 

  25. Eerola, E. and Lehtonen, O. P. (1988) Optimal data processing procedure for automatic bacterial identification by gas-liquid chromatography of cellular fatty acids. J. Clin. Microbiol. 26, 1745–1753.

    CAS  Google Scholar 

  26. Saranpaa, P. and Nyberg, A. (1987) Lipids and sterols in Pinus sylvestris L. sapwood and heartwood. Trees 1, 82–87.

    CAS  Google Scholar 

  27. Nichols, P. D., Mancuso, C. A., and White, D. C. (1987) Measurement of methanotroph and methanogen signature phospholipids for use in assessment of biomass and community structure in model systems. Organic Geochem. 11, 451–461.

    Article  CAS  Google Scholar 

  28. Almeida, J. S., Sonesson, A., Ringleberg, D. B., and White, D. C. (1995) Applications of artificial neural networks to the detection of Mycobacterium tuberculosis, its antibiotic resistance and prediction of pathogenicity amongst Mycobacterium sp. based on signature lipid biomarkers. Binary Comput. Microbiol. 7, 53–59.

    Google Scholar 

  29. Tunlid, A. and White D. C. (1992) Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil, in Soil Biochemistry, vol. 7 (Stotzky G. and Bollag J.-M., eds.), Marcel Dekker, New York.

    Google Scholar 

  30. White, D. C. (1993) Analysis of micro-organisms in terms of quantity and activity in natural environments, in Microbes in Their Natural Environment (Slater, J. H., Whittenbury, R., and Wimpenny, J. W. T. eds.), Society of General Microbiology Symposium 37, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  31. De Boer, S. H. and Sasser, M. (1986) Differentiation of Erwinia carotovora ssp. carotovora and Erwinia carotovora ssp. atroseptica on the basis of cellular fatty acid composition. Can. J. Microbiol. 32, 796–800.

    Article  Google Scholar 

  32. Dees, S. B., Hollis D. G., Weaver R. E., and Moss, C. W. (1981) Cellular fatty acids of Brucella canis and Brucella sius. J. Clin. Microbiol. 14, 111, 112.

    CAS  Google Scholar 

  33. Lambert, M. A., Patton, C. M., Barrett, T. J., and Moss, C. W. (1987) Differentiation of Campylobacter and Campylobacter like organisms by cellular fatty acid composition. J. Clin. Microbiol. 25, 706–713.

    CAS  Google Scholar 

  34. O’Donnell, A. G. (1985) Fatty acid analysis in the identification of natural isolates: possibilities for in situ identification using multivariate pattern recognition, in Recent Advances in Microb. Ecol. (Hattori, T., Ishida, Y., Maruyama, Y., Morita, R., and Uchida A., eds.), Japan Scientific Societies Press, Tokyo, Japan, pp. 674–678.

    Google Scholar 

  35. Mukwaya, G. M. and Welch, D. F. 1989 Subgrouping of Pseudomonas cepacia by cellular fatty acid composition. J. Clin. Microbiol. 27, 2640–2646.

    CAS  Google Scholar 

  36. Rainey, P. B., Thompson, I. P., and Palleroni, N. J. (1994) Genome and fatty acid analysis of Pseudomonas stutzeri. Int. J. Syst. Bacteriol. 62, 93–101.

    Google Scholar 

  37. Vilojoen, B. C, Kock, J. L. F., and Lategan, P. M. (1986) Fatty acid comparison as a guide for the classification of selected genera of yeasts belonging to the Endomycetales. J. Gen. Microbiol. 132, 2397–2400.

    Google Scholar 

  38. Graham, J. H., Hodge, N. C., and Morton, J. B. (1995) Characterisation of fatty acid methyl ester profiles for characterisation of Glomalean fungi and their endomycorrhizae. Appl. Environ. Microbiol. 61, 58–64.

    CAS  Google Scholar 

  39. Bentivenga, S. P. and Morton, J. B. (1996) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc. Natl. Acad. Sci. USA 93, 5659–5662.

    Article  CAS  Google Scholar 

  40. Livesley, M. A., Thompson, I. P., Bailey, M. J., and Nuttall, P. A. (1993) Comparison of the fatty acid profiles of Borrelia, Serpulina and Leptispira species. J. Gen. Microbiol. 139, 889–895.

    Article  CAS  Google Scholar 

  41. Livesley, M. A, Thompson, I. P., Gern, L and Nuttall, P. A. (1993) Diversity in fatty acid profiles of Borrelia burgdorferi. J. Gen. Microbiol. 139, 1947–1957.

    Article  Google Scholar 

  42. Williams, T. and Thompson, I. P. (1994) Fatty acid profiles of invertebrate iridescent viruses. Arch. Virol. 140, 975–981.

    Article  Google Scholar 

  43. Peltonen, R., Ling, W. H, Hanninen, O., and Eerola, E. (1992) An uncooked vegan diet shifts the profile of human fecal microflora: computerised analysis of direct stool sample gas-liquid chromatography profiles of bacterial cellular fatty acids. Appl. Environ. Microbiol. 58, 3660–3666.

    CAS  Google Scholar 

  44. Cavigelli, M. A., Robertson, G. P., and Klug, M. J. (1995) Fatty acid methyl ester (FAME) profiles as measures of soil microbial community structure. Plant Soil 170, 99–113.

    Article  CAS  Google Scholar 

  45. Haack, S. K., Garchow, H., Odelson, D. A., Forney, L. J., and Klug, M. J. (1994) Accuracy, reproducibility and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl. Environ. Microbiol. 60, 2483–2493.

    CAS  Google Scholar 

  46. Linder, K. and Oliver, J. D. (1989) Membrane fatty acid and virulence changes in the viable but non-culturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55, 2837–2842.

    CAS  Google Scholar 

  47. Rice, S. A. and Oliver, J. D. (1992) Starvation response of the marine barophile CNPT-3. Appl. Environ. Microbiol. 58, 2432–2437.

    CAS  Google Scholar 

  48. Kostiw, L. L., Boylen, C. W., and Tyson, B. J. (1972) Lipid composition of growing and starving cells of Arthrobacter crystallopoietes. J. Bacteriol. 94, 1868–1874.

    Google Scholar 

  49. Nickels, J. S., King, J. D., and White, D. C. 1979. Poly-beta-hydroxybutarate accumulation as a measure of unbalanced growth of estuarine detrital microbiota. Appl. Environ. Microbiol. 37, 459–465.

    CAS  Google Scholar 

  50. Tunlid, A., Baird, B. H., Trexler, M. B., Olsson, S., Findlay, R. H., Odham, G., and White, D. C. (1985) Determination of phospholipid ester-linked fatty acids and Poly-beta-hydroxybutarate for the estimation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L.). Can. J. Microbiol. 13, 1113–1119.

    Article  Google Scholar 

  51. Sikkema, J., deBont, J. A. M., and Poolman, B. (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 210–222.

    Google Scholar 

  52. Heipieper, H. J., Diffenbach, J. B., and Kewelob, H. (1991) Microbial respiratory quinones in the environment: a sensitive liquid chromatographic method. J. Microbiol. Methods 5, 243–254.

    Google Scholar 

  53. Pinkart, H. C., Wolfram, J. W., Rogers, R., and White, D. C. (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to O-xylene. Appl. Environ. Microbiol. 62, 1129–1132.

    CAS  Google Scholar 

  54. Rainey, P. B., Bailey, M. J., and Thompson, I. P. (1994) Phenotypic and genotypic diversity of fluorescent pseudomonads isolated from field grown sugar beet. Microbiology 140, 2315–2331.

    Article  CAS  Google Scholar 

  55. Frostegård, A. and Baath, E. (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fertl. Soils 22, 59–65.

    Article  Google Scholar 

  56. Frostegård, A., Tunlid, A., and Baath, E. (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol. Biochem. 28, 55–63.

    Article  Google Scholar 

  57. Olsson, P. A., Baath, E., Jakobsen, I., and Soderstrom, B. (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular fungi. Soil Biol. Biochem. 28, 463–470.

    Article  CAS  Google Scholar 

  58. Olsson, P. A., Baath, E., Jakobsen, I., and Soderstrom, B. (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629.

    Article  CAS  Google Scholar 

  59. White, D. C., and Findlay, R. H. (1988) Biochemical markers for measurement of predation effects on the biomass, community structure, nutritional status and metabolic activity of microbial biofilms. Hydrobiologica 159, 119–132.

    Article  Google Scholar 

  60. Franzmann, P. D., Patterson, B. M., Power, T. R., Nichols, P. D., and Davis, G. B. (1996) Microbial biomass in a shallow, urban aquifer contaminated with aromatic hydrocarbons: analysis by phospholipid fatty acid content and composition. J. Appl. Bacteriol. 80, 617–625.

    Article  CAS  Google Scholar 

  61. Heipierer, H. J., Meulenbeld, G., van Oirschot, Q., and deBont, J. A. M. (1996) Effect of environmental factors on the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida S12. Appl. Environ. Microbiol. 62, 2773–2777.

    Google Scholar 

  62. Pennanen, T., Frostegard, A., Fritze, H., and Baath, E. (1996) Phospholipid fatty acid composition of soil microbial communities along two heavy metal polluted gradients in coniferous forests. Appl. Environ. Microbiol. 62, 420–428.

    CAS  Google Scholar 

  63. Baath, E., Frostegård, A., Pennanen, T., and Fritze, H. (1995) Microbial community structure and pH response in relation to soil organic matter quality in wood ash fertilised, clear-cut or burned coniferous forest soils. Soil Biol. Biochem. 27, 229–240.

    Article  Google Scholar 

  64. Zelles, L., Bai, Q. Y., Rackwitz, R., Chadwick, D., and Beese, F. (1995) Determination of phospholipid and lipopolysaccharide derived fatty acids as an estimate of microbial biomass and community structures in soils. Biol. Fertil. Soils 19, 115–123.

    Article  CAS  Google Scholar 

  65. Jordan, D., Kremer, R. J., Bergfield, W. A., Kim, K. Y., and Cacnio, V. N. (1995) Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biol. Fertil. Soils 19, 297–302.

    Article  Google Scholar 

  66. Wander, M. M., Hedrick, D. S., Kaufman, D., Traina, S. J., Stinner, B. R., Kehrmeyer, S. R., and White, D. C. (1995) The functional significance of the microbial biomass in organic and conventionally managed soils. Plant Soil 170, 87–97.

    Article  CAS  Google Scholar 

  67. Bardgett, R. D., Hobbs, P. J., and Frostegård, A. (1996) Changes in soil fungal-bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264.

    Article  Google Scholar 

  68. Rajendran, N., Matsuda, O., Imamura, N., and Urushigawa, Y. (1992) Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester linked fatty acids. Appl. Environ. Microbiol. 58, 562–571.

    CAS  Google Scholar 

  69. Parkes, R. J., Dowling, N. J. E., White, D. C., Herbert, R. A., and Gibson, G. R. (1993) Characterisation of sulphate-reducing bacterial populations within marine and estuarine sediments with different rates of sulphate reduction. FEMS Microbiol. Ecol. 102, 235–250.

    Article  CAS  Google Scholar 

  70. Rajendran, N., Matsuda, O., Urushigawa, Y., and Simidu, U. (1994) Characterisation of microbial community structure in the subsurface sediment of Osaka Bay, Japan, by phospholipid fatty acids lipid analysis. Appl. Environ. Microbiol. 60, 248–257.

    CAS  Google Scholar 

  71. Kieft, T. L., Ringelberg, D. B., and White, D. C. (1994) Changes id ester linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Appl. Environ. Microbiol. 60, 3292–3299.

    CAS  Google Scholar 

  72. Guezenne, J. and Fiala-Medioni, A. (1996) Bacterial abundance and diversity in the Barbados Trench determined by phospholipid analysis. FEMS Microbiol. Ecol. 19, 83–93.

    Article  Google Scholar 

  73. Amy, P. A., Halderman, D. L. Ringelberg, D., and White, D. C. (1994) Changes in bacterial recoverable from subsurface volcanic rock samples during storage at 4°C. Appl. Environ. Microbiol. 60, 2679–2703.

    Google Scholar 

  74. Hirsch, P., Eckhardt, F. E. W., and Palmer, R. J. (1995) Methods for the study of rock-inhabiting micro-organisms: a review. J. Microbiol. Methods 23, 143–167.

    Article  Google Scholar 

  75. Brink, D. E, Vance, I., and White, D. C. (1994) Detection of Desulfobacter in oil field environments by non-radioactive DNA probes. Appl. Microbiol. Biotechnol. 42, 469–475.

    CAS  Google Scholar 

  76. Sundh, I., Borga, P., Nilsson, M., and Svensson, B. H. (1996) Estimation of cell numbers of methanogenic bacteria in boreal peatlands based on analysis of specific phospholipid fatty acids. FEMS Microbiol. Ecol. 18, 103–112.

    Article  Google Scholar 

  77. Haldeman, D. L., Amy, P. S., Ringelberg, D., White, D. C., Garen R. E., and Ghiorse W. C. (1995) Microbial growth and resuscitation alter community structure after perturbation. FEMS Microbiol. Ecol. 17, 27–38.

    Article  CAS  Google Scholar 

  78. Lehman, R. M., Colwell, F. S., Ringelberg, D. B., and White, D. C. (1995) Microbial community level analysis based on patterns of carbon source utilization and phospholipid fatty acid profiles for quality assurance of terrestrial subsurface cores. J. Microbiol. Methods 22, 263–281.

    Article  Google Scholar 

  79. Leff, L. G., Kernan R. M., McArthur, J. V., and Skimkets, L. J (1995) Identification of aquatic Burkholderia (Pseudomonas) cepacia by hybridisation with species-specific rRNA gene probes. Appl. Environ. Microbiol. 61, 1634–1636.

    CAS  Google Scholar 

  80. Brown, B. J., and Leff, L. G. (1996) Comparison of fatty acid methyl ester analysis with use of API 20NE and NFT strips for identification of aquatic bacteria. Appl. Environ. Microbiol. 62, 2183–2185.

    CAS  Google Scholar 

  81. Mergaert, J., Webb, A., Anderson, C., Wouters, A., and Swings, J. (1993) Microbial degradation of poly-3-hydroxybutyrate. Appl. Environ. Microbiol. 59, 3233–3238.

    CAS  Google Scholar 

  82. Ka, J. O, Holben, W. E., and Tiedje, J. M. (1994) Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading bacteria isolated from 2,4-D treated field soils. Appl. Environ. Microbiol. 60, 1106–1115.

    CAS  Google Scholar 

  83. Tonso, N. L., Matheson, V. G., and Holben, W. E. (1995) Polyphasis chracterisation of a suite of bacterial isolates capable of degrading 2, 4-D. Microb. Ecol. 30, 3–24.

    Article  CAS  Google Scholar 

  84. Thompson, I. P., Bailey, M. J., Ellis, R. J. & Purdy, K. J. (1993) Sub-grouping of bacterial populations by cellular fatty acid composition. FEMS Microbiol. Ecol. 12, 75–84.

    Article  Google Scholar 

  85. Kloepper, J. W., McInroy, J. A., and Bowen, K. L. (1992) Comparative identification by fatty-acid analysis of soil, rhizosphere, and geocarposphere bacteria of peanut (Arachis-hypogaea L). Plant Soil 139, 85–90.

    Article  CAS  Google Scholar 

  86. Lilley, A. K., Fry, J. C., Bailey, M. J., and Day, M. J. (1996) Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol. Ecol. 21, 231–242.

    Article  CAS  Google Scholar 

  87. Foster, J. L. M and Fogelman, J. C. (1993) Identification and ecology of bacterial communities associated with necroses of three cactus species. Appl. Environ. Microbiol. 59, 1–6.

    CAS  Google Scholar 

  88. Foster, J. L. M., and Fogelman, J. C. (1994) Bacterial succession in necrotic tissue of agria cactus (Strenocereus gummosus). Appl. Environ. Microbiol. 60, 619–625.

    CAS  Google Scholar 

  89. Frachon, E., Hamon, S., Nicolas, L., and de Barjac, H. (1991) Cellular fatty acid analysis as a potential tool for predicting mosquitocidal activity of Bacillus sphaericus strains. Appl. Environ. Microbiol. 57, 3394–3398.

    CAS  Google Scholar 

  90. Ndowora, T. C. R., Kinkel, L. L., Jones, R. K., and Anderson, N. A. (1995) Fatty acid analysis of pathogenic and suppressive strains of Streptomyces species isolated in Minnesota. Phytopathology 86, 138–143.

    Article  Google Scholar 

  91. Thompson, I. P., Ellis, R. J., and Bailey, M. J. (1993) Autecology of a genetically modified fluorescent pseudomonad on sugar beet. FEMS Microbiol. Ecol. 17, 1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Thompson, I.P., Bailey, M.J., Lilley, A.K. (1999). Characterizing Microorganisms in the Environment by Fatty Acid Analysis. In: Edwards, C. (eds) Environmental Monitoring of Bacteria. Methods in Biotechnology, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-566-2:201

Download citation

  • DOI: https://doi.org/10.1385/0-89603-566-2:201

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-566-9

  • Online ISBN: 978-1-59259-487-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics