Skip to main content

Application of Denaturing Gradient Gel Electrophoresis to Microbial Ecology

  • Protocol
Environmental Monitoring of Bacteria

Part of the book series: Methods in Biotechnology ((MIBT,volume 12))

Abstract

A significant proportion of microbial ecology is now based on the description of community structure in naturally occurring bacterial assemblages. The development of molecular biological techniques has facilitated this task, primarily via the cloning and sequencing of microbial genes retrieved from the environment. However, the labor-intensive nature of a cloning procedure, as well as the biases that it can introduce, have generated the need for alternative laboratory methods that more accurately describe microbial community structure; denaturing gel electrophoresis is an approach largely adopted by molecular microbial ecologists to perform this function. Denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) are techniques based on the separation of polymerase chain reaction (PCR)-amplified gene fragments, not according to size, but owing to variation in the targeted nucleotide sequences. Nucleotide pair dissociation is mediated in denaturing gradient gels (DGGE) by the chemicals urea and formamide. These denaturants are incorporated into the gel in increasing concentrations to form the denaturing gradient. A so-called melting domain within the DNA fragment being analyzed loses its helical symmetry as it migrates through a linear denaturing gradient gel when it reaches its melting temperature (T m ) point (1). Loss of the double-stranded structure of DNA virtually halts migration. Sequence specificity of domains dictates that they have individual melting temperatures, so, in theory, similar-sized DNA fragments from closely related organisms are resolvable in denaturing gels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, S. G. and Lerman, L. S. (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondencee with melting theory. Proc. Natl. Acad. Sci. USA 80, 1579–1583.

    Article  CAS  Google Scholar 

  2. Sheffield, V. C., Cox, D. R., Lerman, L. S., and Myers, R. M. (1989) Attachment of a 40-base pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA 86, 232–236.

    Article  CAS  Google Scholar 

  3. Muyzer, G., De Waal, E. C., and Uitterlinden, A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700.

    CAS  Google Scholar 

  4. Liesack, W., Weyland, H., and Stackebrandt, E. (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microbiol. Ecol. 21, 191–198.

    Article  CAS  Google Scholar 

  5. Suzuki, M. T. and Giovannoni, S. J. (1996) Bias caused by template annealing in the amplification mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630.

    CAS  Google Scholar 

  6. Wintzingerode, F. V., Gobel, U. B., and Stackebrandt, E. (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213–229.

    Article  Google Scholar 

  7. Felske, A., Rheims, H., Wolterink, A., Stackebrandt, E., and Akkermans, A. D. L. (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soil. Microbiology 143, 2983–2989.

    Article  CAS  Google Scholar 

  8. Ferris, M. J. and Ward, D. M. (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63, 1375–1381.

    CAS  Google Scholar 

  9. Heuer, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E. M. H. (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63, 3233–3241.

    CAS  Google Scholar 

  10. Ovreas, L., Forney, L., Daae, F. L., and Torsvik, V. (1997) Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367–3373.

    CAS  Google Scholar 

  11. Nöbel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W., and Backhaus, H. (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 178, 5636–5643.

    Google Scholar 

  12. Wawer, C. and Muyzer, G. (1995) Genetic diversity of Desulphovibrio spp. in environmental samples analysed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments. Appl. Environ. Microbiol. 61, 2203–2210.

    CAS  Google Scholar 

  13. Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., and Mattick, J. S. (1991) ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008.

    Article  CAS  Google Scholar 

  14. Edwards, U., Rogall, T., Blocker, H., Embe, M., and Bottger, E. C. (1989) Isolation and complete direct nucleotide determination of entire genes. Characterisation of a gene coding for the 16S ribosomal RNA. Nucleic Acids Res. 17, 7843–7853

    Article  CAS  Google Scholar 

  15. Raskin, L. Stromley, J. M., Rittman, B. E., and Stahl, D. A. (1994) Group-specific 16S rRNA hybridisation probes to describe natural communities of methanogens. Appl. Environ. Microbiol. 60, 1232–1240.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hastings, R. (1999). Application of Denaturing Gradient Gel Electrophoresis to Microbial Ecology. In: Edwards, C. (eds) Environmental Monitoring of Bacteria. Methods in Biotechnology, vol 12. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-566-2:175

Download citation

  • DOI: https://doi.org/10.1385/0-89603-566-2:175

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-566-9

  • Online ISBN: 978-1-59259-487-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics