Skip to main content

Nuclear Magnetic Resonance Methods of Monitoring Cell Metabolism

  • Protocol
Animal Cell Biotechnology

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 8))

Abstract

Nuclear magnetic resonance (NMR), which was discovered in 1946, was used primarily by organic chemists for elucidation of the structure of relatively small organic molecules. The advent of Fourier transform NMR, coupled with the development of superconducting magnets with higher field strengths, opened the technique to a variety of biological and clinical applications. NMR is now a proven technique for monitoring metabolism in diverse systems—isolated cells and perfused organs, as well as the intact animal and humans (14). Great scope exists, therefore, for the development of NMR applications in the biotechnology industry. A major analytical advantage of NMR spectroscopy is its unique ability to yield extensive information on a wide range of biologically important low-molecular-weight species simultaneously. Although many NMR-detectable nuclei exist, studies of cell metabolism have generally utilized the 31P, 13C, 1H, and 15N nuclei (1,4). The basic principles of NMR spectroscopy, which are beyond the scope of this chapter, have been described extensively elsewhere (for example, see ref. 5). This chapter will focus on various NMR-based approaches for studying metabolism in cultured mammalian cells (including lines used by the biotechnology industry) and will highlight commonly used techniques for obtaining preparations of cells suitable for NMR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avison, M. J., Hetherington, H. P., and Shulman, R. G. (1986) Applications of NMR to studies of tissue metabolism. Ann. Rev. Biophys. Chem. 15, 377–402.

    Article  CAS  Google Scholar 

  2. Nicholson, J. K. and Wilson, I. D. (1989) High resolution proton magnetic resonance spectroscopy of biological fluids. Prog. NMR Spectrosc. 21, 449–501.

    Article  CAS  Google Scholar 

  3. Cohen, J. S., Jaroszewski, J. W., Kaplan, O., Ruiz-cabello, J., and Collier, S. W. (1995) A history of biological applications of NMR spectroscopy. Prog. NMR Spectrosc. 28(1), 53–85.

    Article  CAS  Google Scholar 

  4. Gadian, D. S. (1995) NMR and Its Applications to Living Systems, 2nd ed., Oxford Science Publications, Oxford.

    Google Scholar 

  5. Sanders, J. K. M., and Hunter, B. K. (1987) Modern NMR Spectroscopy: A Guide for Chemists, Oxford University Press, Oxford.

    Google Scholar 

  6. Callies, R. and Brindle, K. M. (1996) Nuclear magnetic resonance studies of cell metabolism in vivo, in Principles of Cell Biology, vol. 4, Cell Chemistry and Physiology: Part II. pp. 241–269.

    Article  Google Scholar 

  7. Jans, A. W. H. and Liebfritz, D. (1989) A 13C NMR study on the fluxes into the Krebs cycle of rabbit renal proximal tubular cells. NMR Biomed. 1, 171–176.

    Article  CAS  Google Scholar 

  8. Chauvin, M. F., Megnin-Chanet, F., Martin, G., Lhoste, J. M., and Baverel, G. (1994) The rabbit kidney tubule utilizes glucose for glutamine synthesis-A 13C NMR study. J. Biol. Chem. 269(42), 26,025–26,033.

    CAS  Google Scholar 

  9. Street, J. C., Delort, A. M., Braddock, P. S. H., and Brindle, K. M. (1993) A 1H/15N NMR study of nitrogen metabolism in cultured mammalian cells. Biochem. J. 291, 485–492.

    CAS  Google Scholar 

  10. Egan, W. M. (1987) The use of perfusion systems for nuclear magnetic resonance studies of cells, in NMR Spectroscopy of Cells and Organisms (Gupta, R. K., ed.) vol. 1, CRC, Boca Raton, FL, pp. 135–162.

    Google Scholar 

  11. Szwergold, B. S. (1992) NMR spectroscopy of cells. Ann. Rev. Physiol. 54, 775–798.

    Article  CAS  Google Scholar 

  12. McGovern, K. A. (1994) Bioreactors, in NMR in Physiology and Biomedicine (Gillies, R. J., ed.). Academic Press, London.

    Google Scholar 

  13. Callies, R., Jackson, M. E., and Brindle, K. M. (1994) Measurements of the growth and distribution of mammalian cells in a hollow-fibre bioreactor using nuclear magnetic resonance imaging. Biotechnology 12(1), 75–78.

    Article  CAS  Google Scholar 

  14. Mancuso, A., Sharfstein, S. T., Tucker, S. N., Clark, D. S., and Blanch, H. W. (1994) Examination of primary metabolic pathways in a murine hybridoma with 13C nuclear magnetic resonance spectroscopy. Biotechnol. Bioeng. 44(5), 563–585.

    Article  CAS  Google Scholar 

  15. Galons, J. P., Job, C., and Gillies, R. J. (1995) Increase of GPC levels in cultured mammalian cells during acidosis. A 31P NMR spectroscopy study using a continuous bioreactor system. Mag. Res. Med. 33(3), 422–426.

    Article  CAS  Google Scholar 

  16. Gillies, R. J., Mackenzie, N. E., and Dale, B. E. (1989) Analysis of bioreactor performance by nuclear magnetic resonance spectroscopy. Biotechnology 7, 50–54.

    Article  CAS  Google Scholar 

  17. Gillies, R. J., Galons, J. P., McGovern, K. A., Scherer, P. G., Lien, Y. H., Job, C., Ratcliff, R., Chapa, F., Cerdan, S., and Dale, B. E. (1993) Design and application of NMR-compatible bioreactor circuits for extended perfusion of high density mammalian cell cultures. NMR Biomed. 6(1), 95–104.

    Article  CAS  Google Scholar 

  18. Hammer, B. E., Heath, C. A., Mirer, S. D., and Belfort, G. (1990) Quantitative flow measurements in bioreactors by nuclear magnetic resonance imaging. Bio/Technology 8, 327–330.

    Article  CAS  Google Scholar 

  19. Constantinidis, I. and Sambanis, A. (1995) Towards the development of artificial endocrine tissues: 31P NMR spectroscopic studies of immunoisolated, insulin-secreting AtT-20 cells. Biotech. Bioeng. 47, 431–443.

    Article  CAS  Google Scholar 

  20. Williams, S. N. O., Rainer, R. M., and Brindle, K. M. (1997) Mapping of oxygen tension and cell distribution in a hollow fiber bioreactor using magnetic resonance imaging. Biotech. Bioeng. 56, 56–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Anthony, M.L., Williams, S.N.O., Brindle, K.M. (1999). Nuclear Magnetic Resonance Methods of Monitoring Cell Metabolism. In: Jenkins, N. (eds) Animal Cell Biotechnology. Methods in Biotechnology™, vol 8. Humana Press. https://doi.org/10.1385/0-89603-547-6:165

Download citation

  • DOI: https://doi.org/10.1385/0-89603-547-6:165

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-547-8

  • Online ISBN: 978-1-59259-486-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics