Skip to main content

Principles of Affinity-Based Biosensors

  • Protocol

Part of the book series: Methods in Biotechnology ((MIBT,volume 7))

Abstract

The use of antibodies as recognition elements in bioanalytical assays can be traced back to the late 1950s. Yalow and Berson (1) pioneered radioimmunoassay for measurement of insulin and in the followmg year Ekins (2) used this technique to measure thyroxine. Reports involving the use of antibodies in devices that might now be referred to as biosensors began to emerge in the early 1970s with the work of Kronick and Little (3), Glaever (4) and Tromberg et al. (5). In the past decade, a wide variety of affinity-based biosensor contigurations have been reported. Current consensus opinion would suggest that affinity-based biosensors are analytical devices that use an antibody, sequence of DNA, or receptor protein interfaced to a signal transducer to measure a binding event.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yalow, R. S. and Berson, S. A (1959) Assay of plasma insulin in human subjects by immunological methods. Nature 184, 1648,1649.

    Article  Google Scholar 

  2. Ekins, R. P. (1960) The estimation of thyroxin in human plasma by an electrophoretic technique. Clin. Chim. Acta 5, 453–459.

    Article  PubMed  CAS  Google Scholar 

  3. Kronick, M. N. and Little, W. A. (1974) A new immunoassay based on fluorescent excitation by internal reflection spectroscopy Proc Nat1 Acad Scl USA 71, 4553–4555.

    Google Scholar 

  4. Giaever, I. (1973) The antibody antigen interaction: a visual observation J Immunol. 110, 1424–1426.

    PubMed  CAS  Google Scholar 

  5. Tromberg, B J., Sepaniak, M. J., Alarte, J. P., Vo-Dmh, T., and Santella, R M. (1988) Development of antibody-based fibre optic sensors for detection of benzo(a)pyrene metabohte. Anal Chem. 60, 1901–1907.

    Article  PubMed  CAS  Google Scholar 

  6. Turner, A. P. F., Karube, I, and Wilson, S., eds. (1987) Biosensors. Fundamentals and Applications, Oxford University Press, New York

    Google Scholar 

  7. Marco, M.-P., Gee, S., and Hammock, B. D. (1995) Immunochemical techniques for environmental analysis. unmunosensors. Trends Anal Chem. 14, 341–350

    CAS  Google Scholar 

  8. Morgan, C. L., Newman, D. J., and Price, C. P. (1996) Immunosensors: technology and opportunities in laboratory medicine Clin Chem 42, 193–209.

    PubMed  CAS  Google Scholar 

  9. Skladal, P. (1997) Advances in electrochemical immunosensors. Electroanalysis 9, 737–744

    Article  CAS  Google Scholar 

  10. Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M., and Dontha, N. (1996) DNA electrochemical biosensor for the detection of short DNA sequences related to the human immunodeticiency virus. Anal. Chem 68, 2629–2634

    Article  PubMed  CAS  Google Scholar 

  11. Watts, H. J., Yeung, D., and Parks, H. (1995) Real-time detection and quantification of DNA hybridization by an optical biosensor. Anal Chem 67, 4283–4289

    Article  PubMed  CAS  Google Scholar 

  12. Pandey, P. C and Weetall, H. H (1995) Detection of aromatic compounds based on DNA intercalation using an evanescent wave biosensor. Anal. Chem 67, 787–792

    Article  CAS  Google Scholar 

  13. Edwards, R., ed. (1996) Immunoassays Essential Data Wiley, New York.

    Google Scholar 

  14. Nakanishi, K., Muguruma, H., and Karube, I. (1996) A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for minutnosensors. Anal. Chem 68, 1695–1700.

    Article  PubMed  CAS  Google Scholar 

  15. Changeux, J P., Devillers-Thiery, A., and Chemomlle, P. (1984) Acetylcholine receptor. an alosteric protein. Science 225, 1335–1345

    Article  PubMed  CAS  Google Scholar 

  16. Eldefrawi, M. E. and Eldefrawi, A. T. (1973) Purification and molecular properties of the acetylcholine receptor from torpedo electroplax. Arch. Biochem Biophys. 159, 362–373.

    Article  PubMed  CAS  Google Scholar 

  17. Minami, H., Sugawara, M., Odashima, K, Umezawa, Y., Uto, M., Michaelis, E. K., and Kuwana, T. (1991) Ion channel sensors for glutamic acid. Anal Chem. 63, 2787–2795

    Article  PubMed  CAS  Google Scholar 

  18. Sugao, N., Sugawara, M., Minanu, H., Uto, M., and Umezawa, Y. (1993) Na+/D-glucose cotransporter based on bilayer lipid membrane sensor for D-glucose. Anal Chem 65, 363–369

    Article  PubMed  CAS  Google Scholar 

  19. Taylor, R F. (1996) Immobilization methods, in Handbook of Chemical and Biological Sensors (Taylor, R F. and Schultz, J. S., eds), IOP, Philadelphia, PA, pp. 203–219.

    Chapter  Google Scholar 

  20. Bhatia, S K, Shriver-Lake, L. C., Prior, K J., Georger, J. H., Calvert, J. M., Bredhorst, R., and Ligler, F. S. (1989) User of thiol-termial silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Anal. Biochem. 178, 408–413.

    Article  PubMed  CAS  Google Scholar 

  21. Luong, J. H. T., Sochaczewski, E. P., and Guilbault, G. G. (1990) Development of a piezoimmunosensor for the detection of Salmonella typhimunum. Ann. NY Acad. Sci 613, 439–443

    Article  PubMed  CAS  Google Scholar 

  22. Rogers, K. R., Kohl, S. D., Riddick, L. A., and Glass, T. R. (1997) Detection of 2,4-D using the KinExA immunoanalyzer. The Analyst, 122, 1107–1111.

    Article  PubMed  CAS  Google Scholar 

  23. Rogers, K. R., Valdes, J J., and Eldefrawi, M. E. (1989) Acetylcholine receptor fiber-optic evanescent fluorosensor. Anal Biochem. 182, 353–359.

    Article  PubMed  CAS  Google Scholar 

  24. Cornell, B. A., Braach-Maksvytis, V. L. B., King, L. G., Osman, P. D. J., Raguse, B., Wieczorek, L., and Pace, R. J. (1997) A biosensor that uses ion-channel switches. Nature 387, 580–583.

    Article  PubMed  CAS  Google Scholar 

  25. Rabbany, S. Y., Donner, B. L., and Ligler, F S. (1994) Optical biosensors. Crit Rev Biomed Engineer 22, 307–346.

    CAS  Google Scholar 

  26. Jonsson, U. and Malmqvist, M (1992) Real time biosepecific analysis. Adv Biosens 2, 291–336

    Google Scholar 

  27. Beir, F. F and Schmidt, R. D. (1994) Real time analysis of competitive binding using grating coupler immunosensors for pesticide detection. Biosens. Bioelectr 9, 125–130.

    Article  Google Scholar 

  28. Beir, F. F. and Scheller, F. W. (1996) Label-free observation of DNA-hybridization and endonuclease activity on a waveguide surface using a grating coupler. Biosens Bioelectr 11, 669–674.

    Article  Google Scholar 

  29. Guilbault, G. G. and Luong, J. H T. (1994) Piezoelectric immunosensors and their applications in food analysis, in Food Biosensor Analyszs (Wagner, G and Gmlbault, G. G., eds.), Marcel Dekker, New York, pp. 151–172.

    Google Scholar 

  30. Murastsugu, M., Fumihiko, O., Yoshihiro, M., Hosokawa, T., Kurosawa, S., Kamo, N., and Ikeda, H. (1993) Quartz crystal microbalance for the detection of microgram qantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed. Anal Chem 65, 2933–2937.

    Article  Google Scholar 

  31. Starodub, N., Arenkov, P., Starodub, A., and Berezin, V. (1994) Construction and biomedical application of immunosensors based on fiber optics and enhanced chemiluminescence. Optical Eng. 33, 2958–2963.

    Article  CAS  Google Scholar 

  32. Damelsson, B., Mattiansson, B., and Mosbach, K. (1981) Enzyme thermistor devices and their analytical applications. Appl. Biochem Bioeng. 3, 97–143

    Google Scholar 

  33. Kalab, T and Skadal, P (1995) A disposable amperometric immunosensor for 2,4-dichlorophenoxyacetrc acid. Anal Chim. Acta 304, 361–368

    Article  CAS  Google Scholar 

  34. Sandberg, R G., Van Houten, L. J., Schwartz, J. B. R P, Dallas, S M, Silva, J. C., Michael, A., and Narayanswamy, V. (1992) A conductive polymer-based immunosensor for analysis of pestictde residues. ACS Symp Ser. 511, 81.

    Article  CAS  Google Scholar 

  35. Sadik, O. A. and Van Emon, J. M. (1997) Designing rmmunosensors for environmental monitoring Chemtech, June, 38–46.

    Google Scholar 

  36. Eray, M., Dogan, N. S., Reiken, S. R., Sutisna, H., Vanwer, B. J., Koch, A. R., Moffett, D. F., Silber, M., and Davis, W. C. (1995) A highly stable and selective brosensor usmg modified nicotimc acetylcholine receptor (nAChR). Biosystems 35, 183–188

    Article  PubMed  CAS  Google Scholar 

  37. Rogers, K. R., Valdes, J. J., Menking, D., Thompson, R., and Eldefrawi, M. E. (1991) Pharmacologic specificity of an acetylcholine receptor fiber-optic brosensor. Biosens Bioelectron. 6, 501–516.

    Article  Google Scholar 

  38. Anis, N. A., Eldefrawi, M E., and Wong, R. B. (1993) Reusable fiber optic immunosensor for raprd detection of imazethapyr herbicide. J Agric. Chem. 41, 843–848.

    Article  CAS  Google Scholar 

  39. Barnard, S. M. and Walt, D. R. (1991) Chemical sensors based on controlledrelease polymers. Science 251, 927.

    Article  PubMed  CAS  Google Scholar 

  40. Anderson, F. P. and Miller, W. G. (1988) Fiber optic immunochemical sensor for continuous, reversible measurement of phentoin. Clin. Chem 34, 1417–1421.

    PubMed  CAS  Google Scholar 

  41. Meadows, D. L. and Schultz, J. S. (1993) Design, manufacture and characterization of an optical fiber glucose affinity sensor based on a homogeneous fluorescence energy transfer asssay system. Anal Chim Acta 280, 21–30.

    Article  CAS  Google Scholar 

  42. Taylor, R. F. (1996) Chemical and biological sensors: markets and commercralization, in Handbook of Chemtcal and Biological Sensors (Taylor, R. F and Schultz, J. S., eds), IOP, Philadelphia, PA, pp 553–559.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Rogers, K.R. (1998). Principles of Affinity-Based Biosensors. In: Rogers, K.R., Mulchandani, A. (eds) Affinity Biosensors. Methods in Biotechnology, vol 7. Humana Press. https://doi.org/10.1385/0-89603-539-5:3

Download citation

  • DOI: https://doi.org/10.1385/0-89603-539-5:3

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-539-3

  • Online ISBN: 978-1-59259-485-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics