A Novel Synthetic Protocol for the Preparation of Enantiopure 3-, 4-, and 5-Substituted Prolines

  • N. André Sasaki
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 23)


Stereochemicaly well-defined 3-, 4-, and 5-monosubstituted prolines can play an important role as probes in search of potent neuroexitatory agents or in the construction of conformationally constrained peptides. Mimicking distinct conformations of excitatory amino acids may lead to a more detailed understanding of the structural requirements for binding of these amino acids to the proteins involved in the process of neurotransmission (1, 2, 3). Meanwhile, syntheses of conformationally constrained peptides are emerging as useful means for developing peptide-derived pharmaceutical agents (4,5). This chapter describes methodology for synthesizing enantiopure 3-, 4-, and 5-monosubstituted prolines starting from the single l-serine-derived chiral derivative (R)-1 (6, 7, 8, 9).


Ethyl Acetate Flash Chromatography Benzyl Bromide Allyl Bromide Combine Organic Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bridges, R. J., Stanley, M. S., Anderson, M. W., Cotman, C. W., and Chamberlin, A. R. (1991) Conformationally defined neurotransmitter analogues. Selective inhibition of glutamate uptake by one pyrrolidine-2,4-dicarboxylate diastereomer. J. Med. Chem. 34, 717–725.CrossRefGoogle Scholar
  2. 2.
    Humphrey, J. M., Bridges, R. J., Hart, J. A., and Chamberlin, A. R. (1994) 2,3-Pyrrolidinedicarboxyles as neurotransmitter conformer mimics: Enantio-selective synthesis via chelation-controlled enolate alkylation. J. Org. Chem. 59, 2467–2472.CrossRefGoogle Scholar
  3. 3.
    Hashimoto, K., Yamamoto, O., Horikawa, M., Ohfune, Y., and Shirahama, H. (1994) Synthesis and neurobiological actions of pyrrolidine-2,3-dicarboxylic acids (PRDA). Conformationally restricted analogues of l-aspartate. Bioorg. Med. Chem. Lett. 4, 1851–1854.CrossRefGoogle Scholar
  4. 4.
    Yu, K.-L., Rajakumar, G., Srivastava, L. K., Mishra, R. K., and Johnson, R. L. (1988) Dopamine receptor modulationby conformationally constrained analogues of Pro-Leu-Gly-NH2. J. Med. Chem. 31, 1430–1436.CrossRefGoogle Scholar
  5. 5.
    Holladay, M. W., Lin, C. W., May, C. S., Garvey, D. S., Witte, D. G., Miller, T. R., et al. (1991) trans-3-Propyl-l-proline is a highly favarable, conformationally restricted replacement for methionine in the C-terminal tetrapeptide of cholecystokinin. Stereoselective synthesis of 3-allyl-and 3-n-propyl-l-proline derivatives from 4-hydroxy-l-proline. J. Med. Chem. 34, 455–457.CrossRefGoogle Scholar
  6. 6.
    Sasaki, N. A., Pauly, R., Fontaine, C., Chiaroni, A., Riche, C., and Potier, P. (1994) Enantioselective synthesis of (2S,3S)-and (2R,3R)-pyrrolidine-2,3-dicarboxylic acids: Conformationally constrained (S)-and (R)-aspartic acid analogues. Tetrahedron Lett. 35, 241–244.CrossRefGoogle Scholar
  7. 7.
    Pauly, R., Sasaki, N. A., and Potier, P. (1994) A versatile method for the synthesis of (S)-or (R)-cycloalkylglycine, (S)-or (R)-N-Heterocyclic and a,β-unsaturated N-heterocyclic α-amino acids. Tetrahedron Lett. 35, 237–240.CrossRefGoogle Scholar
  8. 8.
    Sasaki, N. A., and Sagnard, I. (1994) A novel method for chirospecific synthesis of 2,5-disubstituted pyrrolidines. Tetrahedron 50, 7093–7108.CrossRefGoogle Scholar
  9. 9.
    Dockner, M., Sasaki, N. A., and Potier, P. (1996) Versatile synthesis of enantiomerically pure trans-2,5-disubstituted pyrrolidines. Heterocycles 42, 529–532.CrossRefGoogle Scholar
  10. 10.
    Sasaki, N. A., Hashimoto, C., and Potier, P. (1987) A novel approach to the synthesis of optically pure non-protein α-amino acids in both l-and d-configurations from l-serine. Tetrahedron Lett. 28, 6069–6072.CrossRefGoogle Scholar
  11. 11.
    Sasaki, N. A., Dockner, M., Chiaroni, A., Riche, C., and Potier, P. (1997) A novel stereodivergent synthesis of optically pue cis-and trans-3-substituted proline derivatives. J. Org. Chem. 62, 765–770.CrossRefGoogle Scholar
  12. 12.
    Subramanian, P. K., and Woodard, R. G. (1987) Synthesis of (R)-and (S)-l-amino[2,2-2H2]cyclopropane-l-carboxylic acids. J. Org. Chem. 52, 15–18.CrossRefGoogle Scholar
  13. 13.
    Chung, J. Y. L., Wasicak, J. T., Arnold, W. A., May, C. S., Nadzan, A. M., and Holladay, M. W. (1990) Conformationally constrained amino acids. Synthesis and optical resolution of 3-substituted proline derivatives. J. Org. Chem. 55, 270–275.CrossRefGoogle Scholar
  14. 14.
    Dockner, M., Sasaki, N. A., Rich, C., and Potier, P. (1997) Enantiospecific synthesis of 2,5-disubstituted piperidine derivatives: Synthesis of (+)-pseudo-conhydrine. Liebigs Ann./Recueil 1267–1272.Google Scholar
  15. 15.
    Vedejs, E., Engler, D. A., and Millins, M. J. (1977) Reactive triflate alkylating agents. J. Org. Chem. 42, 3109–3113CrossRefGoogle Scholar
  16. 16.
    Kunzer, H., Strahnke, M., Sauer, G., and Wiechert, R. (1991) Reductive desulfonylation of phenyl sulfones by samarium (II) iodide-hexamethyl-phosphoric triamide. Tetrahedron Lett. 32, 1949–1952.CrossRefGoogle Scholar
  17. 17.
    Abdel-Magid, A. F., Maryanoff, C.A., and Carson, K. G. (1990) Reductive aminatin of aldehydes and ketones by using sodium triacetoxyborohydride. Tetrahedron Lett. 39, 5595–5598.CrossRefGoogle Scholar
  18. 18.
    Jung, M. E. and Shaw, T. J. (1980) Total synthesis of (R)-glycerol acetonide and the antiepileptic and hypotensive drug (−)-γ-amino-β-hydroxybutyric acid (GABOB): Use of vitamine C as a chiral starting material. J. Am. Chem. Soc. 102, 6304–6311.CrossRefGoogle Scholar
  19. 19.
    Takano, S., Numata, A., and Ogasawara, K. (1982) A simple synthesis of (R)-glycerol acetonide from ascorbic acid. Heterocycles 19, 207–208.Google Scholar
  20. 20.
    Remuzon, P. (1996) Trans-4-hydroxy-l-proline, a useful and versatile chiral starting block. Tetrahedron 52, 13,803–13,835.CrossRefGoogle Scholar
  21. 21.
    Koskinen, A. M. P. and Rapoport, H. (1989) Synthesis of 4-substituted prolines as conformationally constrained amino acid analogues. J. Org. Chem. 54, 1859–1866.CrossRefGoogle Scholar
  22. 22.
    Soucy, F. Wernic, D., and Beaulieu, P. (1991) Preparation of 4-alkylprolines by intramolecular radical cyclization of chiral serine derivatives. J. Chem. Soc. Perkin Trans. 1, 2885–2887.CrossRefGoogle Scholar
  23. 23.
    Rojas, A. (1994) In Utilisation de I'acide pyroglutamique comme source de chiralité en synthèse. (D.S.Thesis) Université de Paris-Sud, France, pp 77–90.Google Scholar
  24. 24.
    Ezquerra, J., Pedregal, C., Yruretagoyena, B., Rubio, A., Carreño, M. C., Escribano, A., and Ruano, J. L. G. (1995) Synthesis of enantiomerically pure 4-substituted glutamic acids and prolines: General Aldol reaction of pyroglutamate lactam lithium enolate mediated by Et2O BF3. J. Org. Chem. 60, 2925–2930.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • N. André Sasaki
    • 1
  1. 1.Institut de Chimie des Substances NaturellesCNRSGifsur-YvetteFrance

Personalised recommendations