Synthesis of Cyclopropane-Containing Leu-Enkephalin Analogs

  • Michael P. Dwyer
  • Stephen F. Martin
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 23)


The use of substituted cyclopropanes as conformationally constrained peptidomimetics has received considerable attention recently (1, 2, 3, 4, 5, 6). The efforts from our laboratory in this area have focused on the use 1,2,3-trisubstituted cyclopropanes as novel isosteric replacements in several biological systems (7, 8, 9, 10). A common theme of this program has been the use of trans-substituted cyclopropanes to enforce extended or “β-strand” secondary structure while orienting the amino acid side chain in a predictable conformation (11). In an effort to explore further the utility of this novel isostere, modeling and calculations suggested that a cis-substituted cyclopropane dipeptide subunit could stabilize a turn structure. The focus of this chapter is to describe the preparation of a novel cyclopropane-containing cis-substituted (-Glyψ[CHOH-cp-CONH]-) subunit, which replaces Gly2-Gly3 subunit of the Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) framework shown in Fig. 1.
Fig. 1.

Leu-Enkephalin analog 1.


Organic Layer Magnesium Sulfate Flash Chromatography Ethylcarbodiimide Hydrochloride Saturated Aqueous NaHCO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stammer, C. H. (1990) Cyclopropane amino acids (2,3-and 3,4-methanomino acids). Tetrahedron 45, 2231–2254.CrossRefGoogle Scholar
  2. 2.
    Melnick, M. J., Bisaha, S. N., and Gammill, R. B. (1990) Conformationally restricted P1-P1 transition state analogues, synthesis of 1(R), 3(R) [1(S), 2(S)] and 1(S), 3(S) [1(S), 2(S)]-3-[3-Cyclohexyl-2[(Boc)Amino]-1-Hydroxylpropyl]-2,2-dimethylcyclopropane carboxylic acid. Tetrahedron Lett. 31, 961–964.CrossRefGoogle Scholar
  3. 3.
    Shimamoto, K., Ishida, M., Shinozaki, H., and Ohfune, Y. J. (1991) Synthesis of four diastereomeric l-2-(carboxycyclopropyl) glycines. Conformationally constrained l-glutamate analogues. J. Org. Chem. 56, 4167–4176.CrossRefGoogle Scholar
  4. 4.
    de Frutos, P., Fernandez, D., Fernandez-Alvarez, E., and Bernabe, M. (1992) Synthesis of asymmetric (E)-α-[2-Phenyl(Ethyl)Cyclopropyl] glycines from serine by diastereoselective dibromocyclopropanation. Tetrahedron 48, 1123–1130.CrossRefGoogle Scholar
  5. 5.
    Zhu, Y.-F., Yamazaki, T., Tsang, J. W., Lok, S., and Goodman, M. (1992) Synthesis and taste properties of l-aspartyl-methylated 1-aminocyclopropane-carboxylic acid methyl esters. J. Org. Chem. 48, 1074–1081.CrossRefGoogle Scholar
  6. 6.
    Burgess, K. and Ho, K.-K. (1992) Asymmetric synthesis of protected derivatives of ornithine-and arginine-2,3-methanologs. Tetrahedron Lett. 33, 5677–5680.CrossRefGoogle Scholar
  7. 7.
    Martin, S. F., Austin, R. E., Oalmann, C. J., Baker, W. R., Condon, S. L., DeLara, E., et al. (1992) 1,2,3-Trisubstituted cyclopropanes as conformationally restricted peptide isosteres: application to the design and synthesis of novel renin inhibitors. J. Med. Chem. 35, 1710–1721.CrossRefGoogle Scholar
  8. 8.
    Baker, W. R., Jae, H.-S., Martin, S. F., Condon, S. L., Stein, H. H., Cohen, J., et al. (1992) Conformationally restricted peptide isosteres. 2. Synthesis and in vitro potency of dipeptide renin inhibitors employing a 2-alkylsulfonyl-3-phenylcyclopropane carboxamide as a P3 amino acid replacement. BioMed. Chem. Lett. 2, 1045–1410.CrossRefGoogle Scholar
  9. 9.
    Martin, S. F., Oalmann, C. J., and Liras, S, (1993) Cyclopropanes as conformationally restricted peptide isosteres: design and synthesis of novel collagenase inhibitors. Tetrahedron 49, 3521–3532.CrossRefGoogle Scholar
  10. 10.
    Hillier, M. C. and Martin, S. F. (1997) Synthesis of conformationally-constrained HIV-1 protease inhibitors,  Chapter 22, this vol.
  11. 11.
    Martin, S. F., Austin, R. E., and Oalmann, C. J. (1990) Stereoselective synthesis of 1,2,3-trisubstitued cyclopropanes as novel dipeptide isosteres. Tetrahedron Lett. 31, 4731–4734.CrossRefGoogle Scholar
  12. 12.
    Blankley, C. J., Sauter, F. J., and House, H. O. (1973) Crotyl diazoacetate, in Organic Synthesis, collective vol. V. (Baumgarter, H. E., ed.), John Wiley, New York, pp. 258–263.Google Scholar
  13. 13.
    Doyle, M. P., Winchester, W. R., Protopopava, M. N., Kazla, A. P., and Wenstrum, L. J. (1996) (R, 55)-(−)-6,6-Dimethyl-3-oxabicyclo[3.1.0]hexanone. Highly enantioselective intramolecular cyclopropanation catalyzed by dirrhodium(II) tetrakis[methyl 2-pyrrolidone-5(R)-carboxylate], in Organic Synthesis, vol 73. (Boeckman, R. K., Jr., ed.) John Wiley, New York, pp. 13–24.Google Scholar
  14. 14.
    Corey, E. J. and Myers, A. G. (1984) Efficient synthesis and intramolecular cyclopropanation of unsaturated diazoacetic esters. Tetrahedron Lett. 23, 3559–3562.CrossRefGoogle Scholar
  15. 15.
    Martin, S. F., Spaller, M. R., Liras, S., and Hartmann, B., (1994) Enantio-and diastereoselectivity in the intramolecular cyclopropanation of secondary allylic diazoacetates, J. Am. Chem. Soc. 116, 4493–4494.CrossRefGoogle Scholar
  16. 16.
    Basha, A., Lipton, M., and Weinreb, S. M. (1977) A mild, general method for the conversion of esters to amides. Tetrahedron Lett. 18, 4171–4174.CrossRefGoogle Scholar
  17. 17.
    Martin, S. F. and Dwyer, M. P., unpublished results.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Michael P. Dwyer
    • 1
  • Stephen F. Martin
    • 1
  1. 1.Department of ChemistryUniversity of Texas at AustinAustin

Personalised recommendations