Advertisement

A Conformationally Restricted β-Strand HIV Protease Inhibitor

  • Michael C. Hillier
  • Stephen F. Martin
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 23)

Abstract

The use of cyclopropanes as a conformationally restricted subunits in biological systems has been the subject of intense study by our group and others (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). Our recent efforts have focused on the use of 1, 2, 3-trisubstituted cyclopropanes as novel [-NH-Cα-] or [-CO-Cα-] bond replacements in pseudopeptides to restrict both side-chain orientation and enforce backbone secondary structures. To test these assumptions, the cyclopropane containing analog 1 (Fig. 1) was modeled after the potent HIV protease inhibitor 2, which together with a series of related derivatives was developed at Abbott Laboratories (11). This pseudopeptide contains a symmetrical diamino diol motif 8 (Fig. 2) flanked by Cbz-protected valine residues and is known to bind in a β-strand fashion at the enzyme-active site (12). Our analog 1 was designed to restrict the orientation of the valine residues and to mimic this “extended” backbone conformation. Comparison of enzyme inhibition constants for both compound 1 and the parent inhibitor 2 will then elucidate the efficacy of the cyclopropane as a conformationally restrictive subunit.
Fig. 1.

HIV protease inhibitors.

Fig. 2.

Synthesis of the cyclopropane containing inhibitor 1.

Keywords

Flash Chromatography Combine Organic Layer Backbone Conformation Carbodiimide Hydrochloride Pyridinium Chlorochromate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Martin, S. F., Austin, R. E., and Oalmann, C. J. (1990) Stereoselective synthesis of cyclopropanes as novel dipeptide isosteres. Tetrahedron Lett. 31, 4731–4734.CrossRefGoogle Scholar
  2. 2.
    Martin, S. F., Austin, R. E., Oalmann, C. J., Baker, W. R., Condon, S. L., deLara, E., et al. (1992) 1,2,3-Trisubstituted cyclopropanes as conformationally restricted peptide isosteres: application to the design and synthesis of novel renin inhibitors. J. Med. Chem. 35, 1710–1721.CrossRefGoogle Scholar
  3. 3.
    Baker, W. R., Jae, H-S., Martin, S. F., Condon, S. L., Stein, H. H., Cohen, J., et al. (1992) Conformationally restricted peptide isosteres. 2. Synthesis and in vitro potency of dipeptide renin inhibitors employing a 2-alkylsulfonyl-3-phenyl-cyclopropane carboxamide as a P3 amino acid replacment. Bio. Med. Chem. Lett. 2, 1405–1410.CrossRefGoogle Scholar
  4. 4.
    Martin, S. F., Oalmann, C. J., and Liras, S. (1993) Cyclopropanes as conformationally restricted peptide isosteres. Design and synthesis of novel collagenase inhibitors. Tetrahedron 49, 3521–3532.CrossRefGoogle Scholar
  5. 5.
    Stammer, C. H. (1990) Cyclopropane amino acids (2,3-and 3,4-methanomino acids). Tetrahedron 45, 2231–2254.CrossRefGoogle Scholar
  6. 6.
    Melnick, M. J., Bisaha, S. N., and Gammill, R. B. (1990) Conformationally restricted P1-P1′ transition state analogues. Synthesis of 1(R), 3(R) [1(S), 2(S)] and 1(S), 3(S) [1(S), 2(S)]-3-[3-cyclohexyl-2[(Boc)amino]-l-hydroxylpropyl]-2,2-Dimethylcyclopropane carboxylic acid. Tetrahedron Lett. 31, 961–964.CrossRefGoogle Scholar
  7. 7.
    Shimamoto, K., Ishida, M., Shinozaki, H., and Ohfune, Y. J. (1991) Synthesis of four diastereomeric l-2-(carboxycyclopropyl) glycines. Conformationally constrained l-glutamate analogues. J. Org. Chem. 56, 4167–4176.CrossRefGoogle Scholar
  8. 8.
    de Frutos, P., Fernandez, D., Fernandez-Alvarez, E., and Bernabe, M. (1992) Synthesis of asymmetric (E)-α-[2-phenyl(ethyl)cyclopropyl] glycines from serine by diastereoselective dibromocyclopropanation. Tetrahedron 48, 1123–1130.CrossRefGoogle Scholar
  9. 9.
    Zhu, Y.-F., Yamazaki, T., Tsang, J. W., Lok, S., and Goodman, M. (1992) Synthesis and taste properties of l-aspartyl-methylated 1-aminocyclopropane-carboxylic acid methyl esters. J. Org. Chem. 48, 1074–1081.CrossRefGoogle Scholar
  10. 10.
    Burgess, K. and Ho, K.-K. (1992) Asymmetric synthesis of protected derivatives of ornithine-and arginine-2,3-methanologs. Tetrahedron Lett. 33, 5677–5680.CrossRefGoogle Scholar
  11. 11.
    Kempf, D. J., Codacovi, L., Wang, X. C., Kohlbrenner, W. E., Wideburg, N. E., Saldivar, A., et al. (1993) Symmetry-based inhibitors of HIV protease, structure-activity studies of acylated 2,4-diamino-1,5-diphenyl-3-hydroxypentane and 2,5-diamino-1,6-diphenylhexane-3,4-diol. J. Med. Chem. 36, 320–330.CrossRefGoogle Scholar
  12. 12.
    Erickson, J., Neidhart, D. J., VanDrie, J., Kempf, D. J., Wang, X. C., Norbeck, D. W., et al. (1990) Design, activity and 2.8 Å crystal structure of a C 2 symmetric inhibitor complexed to HIV-1 protease. Science 249, 527–533.CrossRefGoogle Scholar
  13. 13.
    Blankley, C. J., Sauter, F. J., and House, H. O. (1973) Crotyl diazoacetate, in Organic Synthesis. Coll. vol. 5, (Baumgauter, H. E., ed.), John Wiley, New York, pp. 258–263.Google Scholar
  14. 14.
    Doyle, M. P., Winchester, W. R., Protopopava, M. N., Kazala, A. P., and Westrum, L. J. (1996) (1R, 5S)-(−)-6,6-dimethyl-3-oxabicyco[3.1.0]hexan-2-one. Highly enantioselective intramolecular cyclopropanation catalyzed by dirhodium(II) tetrakis[methyl 2-pyrrolidone-5(R)-carboxylate], in Organic Synthesis, vol. 73, (Boeckman, R. K., Jr, ed.) John Wiley, New York, pp. 13–24.Google Scholar
  15. 15.
    Henke, B. R., Kouklis, A. J., and Heathcock, C. H. (1992) Intramolecular 1,3-dipolar cycloaddition of stabilized azomethine ylides to unactivated dipolarophiles. J. Org. Chem. 57, 7056–7066.CrossRefGoogle Scholar
  16. 16.
    Kempf, D. J., Sowin, T. J., Doherty, E. M., Hannick, S. M., Codavoci, L., Henry, R. F., et al. (1992) Stereocontrolled synthesis of C 2-symmetric and Pseudo-C 2-symmetric diamino alcohols and diols for use in HIV protease inhibitors. J. Org. Chem. 57, 5692–5700.CrossRefGoogle Scholar
  17. 17.
    Basha, A., Lipton, M., and Weinreb, S. M. (1977) General method for conversion of esters to amides, Tetrahedron Lett. 4171.Google Scholar
  18. 18.
    Corey, E. J. and Suggs, J. W. (1975) Pyridinium chlorochromate. An effecient reagent for oxidation of primary and secondary alcohols to carbonyl compounds. Tetrahedron Lett. 31, 2647–2650.CrossRefGoogle Scholar
  19. 19.
    For a general discussion of the Jones Reagent (chromic acid), see Paquette, L. A. (ed.) (1995) Encyclopedia of Reagents for Organic Synthesis, vol. 2, John Wiley, New York, pp 1621–1623.Google Scholar
  20. 20.
    For a comprehensive discussion of protecting groups, see Greene, T. W. and Wuts, P. G. M. (eds.) (1991) Protective Groups in Organic Synthesis, 2nd ed., Wiley-Interscience, New York.Google Scholar
  21. 21.
    Martin, S. F., Oalmann, C. J., and Liras, S. (1992) Enantioselective rhodium catalyzed intramolecular cyclopropanation of homoallylic diazoacetates. Tetrahedron Lett. 33, 6727–6730.CrossRefGoogle Scholar
  22. 22.
    Dwyer, M. P. and Martin, S. F. (1998) Synthesis of cyclopropane-containing Leu-Enkephalin analogs, in Peptidomimetics Protocols (Kazmierski, W., ed.), Humana, Totowa, NJ, Chap. 23.Google Scholar
  23. 23.
    Martin, S. F., Dorsey, G. O., Gaue, T., Hillier, M. C., Kesslar, H., Baur, M. et al. (1998) Cyclopropane-derived peptidomimetics: Design, synthesis, evaluation, and structure of novel HIV-I protease inhibitors. J. Med. Chem. (in press).Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Michael C. Hillier
    • 1
  • Stephen F. Martin
    • 1
  1. 1.Department of ChemistryUniversity of Texas at AustinAustin

Personalised recommendations