Advertisement

Synthesis of 3-Amino-l-CarboxymethyI-Benzodiazepine (BZA) Peptidomimetics

  • James C. MarstersJr.
  • Thomas E. Rawson
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 23)

Abstract

Replacement of key structural or binding elements of a peptide lead with nonpeptide components can improve affinity and metabolic stability (1, 2, 3, 4, 5). Such a strategy was successfully applied to the generation of potent, cell-permeable inhibitors of Ras famesyltransferase (FTase) (6,7). The central pair of amino acids in the CAAX tetrapeptide was replaced with the nonpeptide scaffold 3-methylamino-1-carboxymethyl-2,3-dihydro-5-phenyl-1H-1,4-benzodiazepin-2-one, (N-Me)BZA, shown below.

Keywords

Anhydrous Sodium Sulfate Methyl Iodide Hydrogen Fluoride Raney Nickel Cesium Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Freidinger, R. M. (1989) Non-peptide ligands for peptide receptors. Trends Pharm. Sci. 10, 270.CrossRefGoogle Scholar
  2. 2.
    Farmer, P. S. (1980) Bridging the gap between bioactive peptides and nonpeptides: Some perspectives in design, in Drug Design, vol. X (Ariens, E. J., ed.), Academic, New York, pp. 119–143.Google Scholar
  3. 3.
    Ball, J. B. and Alewood, P. F. (1990) Conformational constraints: nonpeptide betaturn mimics. J. Mol. Recognition 3, 55.CrossRefGoogle Scholar
  4. 4.
    Morgan, B. A. and Gainor, J. A. (1989) Approaches to the discovery of nonpeptide ligands for peptide receptors and peptidases. Ann. Rep. Med. Chem. 24, 243.CrossRefGoogle Scholar
  5. 5.
    Gante, J. (1994) Peptidomimetics: Tailored enzyme inhibitors. Angew. Chem. Int. Ed. 22, 1699.Google Scholar
  6. 6.
    James, G. L., Goldstein, J. L., Brown, M. S., Rawson, T. E., Somers, T. C., McDowell, R. S., et al. (1993) Benzodiazepine peptidomimetics: Potent inhibitors of Ras farnesylation in animal cells. Science 260, 1937–42.CrossRefGoogle Scholar
  7. 7.
    Marsters, J. C., Jr., McDowell, R. S., Reynolds, M. E., Oare, D. A., Somers, T. C., Stanley, M. S., et al. (1994) Benzodiazepine peptidomimetic inhibitors of farnesyltransferase. Bioorganic Med. Chem. 2, 949–957.CrossRefGoogle Scholar
  8. 8.
    Bock, M. G., DiPardo, R. M., Evans, B. E., Rittle, K. E., Veber, D. F., Freidinger, R. M., et al. (1987) Synthesis and resolution of 3-amino-1,3-dihydro-5-phenyl-2H-1,4-benzodiazepin-2-ones. J. Org. Chem. 52, 3232.CrossRefGoogle Scholar
  9. 9.
    Paquet, A. (1982) Introduction of 9-fluorenylmethyloxycarbonyl, trichloro-ethoxycarbonyl, and benzyloxycarbonyl amine protecting groups into O-unprotected hydroxy amino acids using succinimidyl carbonates. Can. J. Chem. 60, 976.CrossRefGoogle Scholar
  10. 10.
    Rawson, T. E., Somers, T. C., Marsters, J. C., Jr., Wan, D. T., Reynolds, M. E., and Burdick, D. J. (1995) Stereochemistry of the benzodiazepine based Ras farnesyltransferase inhibitors. Bioorganic Med. Chem. Lett. 5, 1335–1338.CrossRefGoogle Scholar
  11. 11.
    Barany, G. and Merrifield, R. B. (1980) Solid-phase peptide synthesis, in The Peptides, vol. 2 (Gross, E. and Meienhofer, J., ed.), Academic, New York, pp. 1–284.Google Scholar
  12. 12.
    Bundgaard, H. (1985) in Design of Prodrugs (Bundgaard H., ed.), Elsevier, New York, pp. 1–92.Google Scholar
  13. 13.
    Thompson, L. A. and Ellman, J. A. (1996) Synthesis and applications of small molecule libraries. Chem. Rev. 96, 555–600.CrossRefGoogle Scholar
  14. 14.
    Butcher, J. W., Liverton, N. J., Selnick, H. G., Elliot, J. M., Smith, G. R., Tebben, A. J., et al. (1996) Preparation of 3-amino-1,4-benzodiazepine-2-ones via direct azidation with trisyl azide. Tetrahedron Lett. 37, 6685–6688.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • James C. MarstersJr.
    • 1
  • Thomas E. Rawson
    • 1
  1. 1.Department of Bioorganic ChemistryGenentech, Inc.South San Francisco

Personalised recommendations