Synthesis and Use of Pseudopeptides Derived from 1,2,4-Oxadiazole-, 1,3,4-Oxadiazole-, and 1,2,4-Triazole-based Dipeptidomimetics

  • Kristina Luthman
  • Susanna Borg
  • Uli Hacksell
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 23)


This chapter focuses on the isosteric replacement of peptide bonds with three different types of heterocyclic ring systems (1); 1,2,4-oxadiazole (2), 1,3,4-oxadiazole (3), and 1,2,4-triazole rings (4, 5, 6). The ring systems are similar in size and shape but show variations in aromatic, electrostatic, and hydrogen bonding properties. These variations provide opportunities to study properties of importance for amide bond mimicry. The derivatives are synthesized from protected natural amino acids, and the reaction conditions have been chosen so that the enantiopurity is retained during the reaction sequences. Two series of mimetics will be described, one in which the carboxylic acid functionality is directly attached to the heterocyclic ring (1) and one series with a methylene group inserted between the ring and the carboxylic acid group (7). Since we have focused on the design and synthesis of Phe-Gly mimetics, the synthetic examples described here start from l-phenylalanine. However, we have used the same synthetic scheme also for other amino acids and notes will be given when other derivatives require differences in reaction conditions (1). The use of the dipeptidomimetics as building blocks in pseudopeptide synthesis will also be described (7). These syntheses are performed on solid phase using Boc-chemistry. Also, the deprotection and purification of the pseudopeptides by reversed phase HPLC will be discussed.


Diethyl Ether Hydrazine Hydrate Ethyl Cyanoacetate Amino Acid Ester Mixed Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Borg, S., Estenne-Bouhtou, G., Luthman, K., Csoregh, I., Hesselink, W., and Hacksell, U. (1995) Synthesis of 1,2,4-oxadiazole-, 1,3,4-oxadiazole, and 1,2,4-triazole-derived dipeptidomimetics. J. Org. Chem. 60, 3112–3120.CrossRefGoogle Scholar
  2. 2.
    Clapp, L. B. (1984) 1,2,3-and 1,2,4-Oxadiazoles, in Comprehensive Heterocyclic Chemistry, vol. 6 (Potts, K. T., ed.), Pergamon, Oxford, pp. 365–392.CrossRefGoogle Scholar
  3. 3.
    Hill, J. (1984) 1,3,4-Oxadiazoles, in Comprehensive Heterocyclic Chemistry, vol. 6 (Potts, K. T., ed.), Pergamon, Oxford, pp. 427–466.CrossRefGoogle Scholar
  4. 4.
    Polya, J. B. (1984) 1,2,4-Triazoles, in Comprehensive Heterocyclic Chemistry, vol. 5, part 4A, (Potts, K. T., ed.), Pergamon, Oxford, pp. 733–790.CrossRefGoogle Scholar
  5. 5.
    Burrell, G., Evans, J. M., Hadley, M. S., Hicks, F., and Stemp, G. (1994) Benzopyran potassium channel activators related to cromakalim–Heterocyclic amide replacement at position 4. Bioorg. Med. Chem. 4, 1285–1290.CrossRefGoogle Scholar
  6. 6.
    Thompson, S. K., Eppley, A. M., Frazee, J. S., Darcy, M. G., Lum, R. T., Tomaszek, T. A., Jr., Ivanoff, L. A., Morris, J. F., Sternberg, E. J., Lambert, D. M., Fernandez, A. V., Petteway, S. R., Jr., Meek, T. D., Metcalf, B. W., and Gleason, J. G. (1994) Synthesis and antiviral activity of a novel class of HIV-1 protease inhibitors containing a heterocyclic PI′-P2′ amide bond isostere. Bioorg. Med. Chem. Lett. 4, 2441–2446.CrossRefGoogle Scholar
  7. 7.
    Borg, S., Vollinga, R. C., Terenius, L., and Luthman, K. (1997) Heterocyclic Phe-Gly mimetics as building blocks in pseudopeptides. Design, synthesis, and evaluation. J. Med. Chem., submitted.Google Scholar
  8. 8.
    Eloy, F. and Lenaers, R. (1966) Synthèse d’amino-oxadiazoles-1,2,4 Helv. Chim. Acta 49, 1430–1432.CrossRefGoogle Scholar
  9. 9.
    Paulder, W. W. and Kuder, J. E. (1967) The conversion of imidazo[l,5-a]pyridines into 3-(2-pyridyl)-l,2,4-oxadiazoles J. Org. Chem. 32, 2430–2433.CrossRefGoogle Scholar
  10. 10.
    Yurugi S., Miyake, A., Fushimi, T., Imamiya, E., Matsumura, H., and Imai, Y. (1973) Studies on the syntheses of N-heterocyclic compounds. III. Hyper-choleserolemic 1,2,4-oxadiazole derivatives. Chem. Pharm. Bull. 21, 1641–1650.Google Scholar
  11. 11.
    Jones, J. (1991) Peptide bond formation, in The Chemical Synthesis of Peptides (Halpern, J., Green, M. L. K., Mukaizama, T., eds.), Oxford University Press, New York, pp. 42–75.Google Scholar
  12. 12.
    Eloy, F. and Lenaers, R. (1962) The chemistry of amidoximes and related compounds. Chem. Rev. 62, 155–183.CrossRefGoogle Scholar
  13. 13.
    Chiou, S. and Shine, H. J. (1989) A simplified procedure for preparing 3,5-disubstituted-l,2,4-oxadiazoles by reaction of amidoximes with acyl chlorides in pyridine solution. J. Heterocyclic Chem. 26, 125–128.CrossRefGoogle Scholar
  14. 14.
    Ungnade, H. E. and Kissinger, L. W. (1958) The structure of amidoximes. J. Org. Chem. 23, 1794–1796.CrossRefGoogle Scholar
  15. 15.
    Loubinoux, B., O’Sullivan, A. C., Sinnes, J.-L., and Winkler, T. (1994) A new method for the synthesis of 2-carboxymethyl-2-hydroxy-tetrahydropyrans. Tetrahedron 50, 2047–2054.CrossRefGoogle Scholar
  16. 16.
    Brown, H. C., Garg, C. P., and Liu, K.-T. (1971) The oxidation of secondary alcohols in diethyl ether with aqueous chromic acid. A convenient procedure for the preparation of ketones in high enantiomeric purity. J. Org. Chem. 36, 387–390.CrossRefGoogle Scholar
  17. 17.
    Müller, E. (1971) Umwandlung von Di-, Tri-und Tetraacylhydrazinen, in Methoden der Organischen Chemie, vol. 10/2 (Houben-Weyl) (Müller, E., ed), Georg Thieme Verlag, Stuttgart, pp. 163–168.Google Scholar
  18. 18.
    Stelzel, P. (1974) N-Acyl-azoimine (N-Acyl-aminosMäure-azide, Azid-Methode), in Methoden der Organischen Chemie (Houben-Weyl), vol. XV/2 (Müller, E., ed), Georg Thieme Verlag, Stuttgart, pp. 296–322.Google Scholar
  19. 19.
    Rzeszotarska, B., Nadolska, B., and Tarnawski, J. (1981) Synthese von Peptiden mit 3′-Iod-l-tyrosin ohne Blockierung der Phenolfunktion. J. Liebigs Ann. Chem. 1294–1302.Google Scholar
  20. 20.
    Hassner, A. and Alexanian, V. (1978) Direct room temperature esterification of carboxylic acids. Tetrahedron Lett. 4475–4478.Google Scholar
  21. 21.
    Boesch, R. (1978) 1,3,4-Oxadiazolverbindungen, deren Herstellung und ihre Verwendung. Ger. Pat. 28 08 842.Google Scholar
  22. 22.
    Golfier, M. and Guillerez, M.-G. (1976) Cyclisations dipolaires I. Mecanisme de la cyclisation des dihydrazides par la reactif SOCl2/pyridine. Tetrahedron Lett. 267–270.Google Scholar
  23. 23.
    Neilson, D. G., Roger, R., Heatlie, J. W. M., and Newlands, L. R. (1970) The chemistry of amidrazones. Chem. Rev. 70, 151–170.CrossRefGoogle Scholar
  24. 24.
    Watson, K. M. and Neilson, D. G. (1975) The chemistry of amidrazones, in The Chemistry of Functional Groups, part “The Chemistry of Amidines and Imidates ” (Patai, S., ed.), John Wiley, New York, pp. 491–544.Google Scholar
  25. 25.
    Francis, J. E., Gorczyca, L. A., Mazzenga, G. C., and Meckler, H. (1987) A convenient synthesis of 3,5-disubstituted-l,2,4-triazoles. Tetrahedron Lett. 28, 5133–5136.CrossRefGoogle Scholar
  26. 26.
    Schmidt, P. and Druey, J. (1955) Heilmittelchemische studien in der hetero-cyclischen reihe. 1,2,4-triazine. Helv. Chim. Acta 38, 1560–1564.CrossRefGoogle Scholar
  27. 27.
    Rätz, R. and Schroeder, H. (1958) Products from reaction of hydrazine and thionooxamic acid and their conversion into heterocyclic compounds. J. Org. Chem. 23, 1931–1934.CrossRefGoogle Scholar
  28. 28.
    Chen, F. M. F. and Benoiton, N. L. (1987) The preparation and reactions of mixed anhydrides of N-alkoxycarbonylamino acids. Can. J. Chem. 65, 619–625.CrossRefGoogle Scholar
  29. 29.
    Glickman, S. A. and Cope, A. C. (1945) Structure of β-amino derivatives of α,β-unsaturated lactones and esters. J. Am. Chem. Soc. 67, 1017–1020.CrossRefGoogle Scholar
  30. 30.
    Merrifield, R. B. (1963) Solid phase peptide synthesis. I. The synthesis of a tet-rapeptide. J. Am. Chem. Soc. 85, 2149–2154.CrossRefGoogle Scholar
  31. 31.
    Barany, G., Kneib-Cordonier, N., and Mullen, D. G. (1987) Solid phase peptide synthesis: a silver anniversary report. Int. J. Peptide Protein Res. 30, 705–739.CrossRefGoogle Scholar
  32. 32.
    Matsueda, G. R. and Stewart, J. M. (1981) A p-methylbenzhydrylamine resin for improved solid-phase synthesis of peptide amides. Peptides 2, 45–50.CrossRefGoogle Scholar
  33. 33.
    Benz, H. (1994) The role of solid-phase fragment condensation (SPFC) in peptide synthesis. Synthesis 337–358.Google Scholar
  34. 34.
    Jung, M. E. and Lyster, M. A. (1978) Conversion of alkyl carbamates into amines via treatment with trimethylsilyl iodide. J. Chem. Soc., Chem. Commun. 315–316.Google Scholar
  35. 35.
    Lott, R. S., Chauhan, V. S., and Stammer, C. H. (1979) Trimethylsilyl iodide as a peptide deblocking agent. J. Chem. Soc., Chem. Commun. 495–496.Google Scholar
  36. 36.
    Borg, S., Luthman, K., Nyberg, F., Terenius, L., and Hacksell, U. (1993) 1,2,4-Oxadiazole derivatives of phenylalanine: potential inhibitors of substance P endopeptidase. Eur. J. Med. Chem. 28, 801–810.CrossRefGoogle Scholar
  37. 37.
    Rigo, B. and Couturier, D. (1986) Studies on pyrrolidinones. A convenient synthesis of 2-methyl-5-(5-oxo-l-benzyl-2-pyrrolidinyl)-l,3,4-oxadiazoles. J. Heterocyclic Chem. 23, 253–256.CrossRefGoogle Scholar
  38. 38.
    Cauliez, P., Couturier, D., Rigo, B., Fasseur, D., and Halama, P. (1993) Studies on pyrrolidinones. Synthesis of 2-(5-oxo-2-pyrrolidinyl)-l,3,4-oxadiazoles and 2-(5-oxo-2-pyrrolidinyl)benzimidazoles. J. Heterocyclic Chem. 30, 921–927.CrossRefGoogle Scholar
  39. 39.
    Wieland, T., Lewalter, J., and Birr, C. (1970) Ýber peptidsynthesen, XLIV. Nachträgliche aktivierung von carboxyl-derivaten durch oxydation oder elimin-ierung und ihre anwendung zur peptid-synthese an fester phase sowie zur cyclisierung von peptiden. Liebigs Ann. Chem. 740, 31–47.CrossRefGoogle Scholar
  40. 40.
    Bodanszky, M., Klausner, Y. S., and Ondetti, M. A. (1976) Peptide Synthesis, 2nd ed., Wiley, New York,  Chapter 7, pp. 158–176.Google Scholar
  41. 41.
    Barany, G. and Merrifield, R. B. (1980) Solid-phase peptide synthesis, in The Peptides. Analysis, Synthesis, Biology, vol 2 (Gross, E. and Meienhofer, J., eds.), Academic, New York, 1–284.Google Scholar
  42. 42.
    Brachwitz, H. (1972) Hydroximsäurederivate; versuch zur darstellung der 5-phenyl-l,2,4-oxadiazol-3-carbonsäure. Z. Chem. 12, 130–132.CrossRefGoogle Scholar
  43. 43.
    Spinelli, D., Noto, R., Consiglio, G., Werber, G., and Buccheri, F. (1977) Kinetic study of the decarboxylation of 5-amino-l,3,4-oxadiazole-2-carboxylic acid to 2-amino-l,3,4-oxadiazole in water as a function of proton activity. J. Chem. Soc., Perkin Trans. 2, 639–642.Google Scholar
  44. 44.
    Noto, R., Buccheri, F., Consiglio, G., and Spinelli, D. (1980) Studies on decarboxylation reactions. Part 4. Kinetic study of the decarboxylation of some N-alkyl-or N-phenyl-substituted 5-amino-l,3,4-oxadiazole-2-carboxylic acids. J. Chem. Soc., Perkin Trans. 2, 1627–1630.Google Scholar
  45. 45.
    Dost, J., Stein, J., and Heschel, M. (1986) Zur herstellung von 5-substituierten 1,2,4-triazol-3-carbonsäurederivaten aus oxalsäureethylester-N1-acylamidrazonen. Z. Chem. 26, 203–204.CrossRefGoogle Scholar
  46. 46.
    Heschel, H., Stein, J., and Dost, J. (1987) Ýber cyclisierungsversuche von oxalsäureethylester-Nl-acyl-amidrazonenzu5-R-l,4-triazol-3-carbonsäurederivaten. Wiss. Z. Paedagog. Hochsch. “Karl Liebknecht” Potsdam 31, 45–52.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1999

Authors and Affiliations

  • Kristina Luthman
    • 1
  • Susanna Borg
    • 1
  • Uli Hacksell
    • 1
  1. 1.Department of Organic Pharmaceutical Chemistry, Uppsala Biomedical CentreUppsala UniversityUppsalaSweden

Personalised recommendations