Skip to main content

Bacillus thuringiensis

Natural and Recombinant Bioinsecticide Products

  • Protocol
Book cover Biopesticides: Use and Delivery

Part of the book series: Methods in Biotechnology ((MIBT,volume 5))

Abstract

Worldwide sales of Bacillus thuringiensis (Bt) dwarf those of any other biopesticide product. Annual sales in the early 1990s were estimated at $100 million, accountmg for l-2% of the global insecticide market (1, 2). The largest masrket for Bt-based bioinsecticides, estimated by van Frankenhuyzen (3) to be ~60% of the total Bt market m 1990, is in the protection of vegetable and horticultural crops from lepidopteran pests. The remainder of the Bt market Includes applications for the control of forest pests (3), particularly in North America, dipteran pests that act as vectors of human diseases (2), lepidopteran pests on cotton, and coleopteran pests on solanaceous crops, Lambert and Peferoen (1) and van Frankenhuyzen (3) provide fine historical overviews of the development of Bt as a commercial bioinsecticide. Over the past 15 yr, much progress has been made in understanding the molecular and genetic basis of Bt insecticidal activity. The recent review by Cannon (4) covers many aspects of Bt molecular biology. In this chapter, we will highlight advances in the development of improved btoinsectrcide products based on recombinant or genetically modified strams of Bt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lambert, B and Peferoen, M (1992) Insecticidal promise of Bacillus thuringiensis Facts and mysteries about a successful biopesticide Bioscience 42, 112–122

    Article  Google Scholar 

  2. Bernhard, K and Utz, R (1993) Production of Bacillus thuringiensis insecticides for experimental and commercial uses, in Bacillus thuringiensis, An Environmental Biopesticide Theory and Practice (Entwistle, P. F, Cory, J S, Bailey, M J, and Higgs, S, eds), Wiley, Chtchester, UK, pp 255–267

    Google Scholar 

  3. van Frankenhuyzen, K (1993) The challenge of Bacillus thuringiensis, in Bacillus thuringiensis, An Environmental Biopesticide Theory and Practice (Entwistle, P. F., Cory, J S, Bailey, M. J, and Higgs, S., eds), Wiley, Chichester, UK, pp 1–35

    Google Scholar 

  4. Cannon, R. J. C (1996) Bacillus thuringzensis use in agriculture, a molecular perspective Biol Rev 71, 561–636.

    Article  Google Scholar 

  5. Travers, R S, Martin, P. A., and Reichelderfer, C F (1987) Selective process for efficient isolation of soil Bacillus sp Appl Environ Microbiol 53, 1263–1266

    CAS  Google Scholar 

  6. Smith, R A and Couche, G A. (1991) The phylloplane as a source of Bacillus thuringiensis variants Appl Environ Microbiol 57, 31l–315.

    Google Scholar 

  7. de Barjac, H. and Bonnefol, A. (1968) A classification of strains of Bacillus thuringiensis with a key to their differentiation. J Invert Pathol. 11, 335–347

    Article  Google Scholar 

  8. Lecadet, M. M, Frachon, E, Dumanolr, V. C., and de Barjac, H (1994) An updated version of the Bacillus thuringiensis strains classification according to H-sero-types, in Abstracts of the VIth International Colloquium on Invertebrate Pathology and Microbial Control, Society for Invertebrate Pathology, Montpelller, France, p 345.

    Google Scholar 

  9. Crickmore, N, Zelgler, D R, Feltelson, J., Schnepf, H. E, Lambert, B., Lereclus, D, Gawron-Burke, C, and Dean, D. H. (1995) Revision of the nomenclature for the Bacillus thuringiensis pesticidal cry genes, in Program and Abstracts of the 28th Annual Meeting of the Society for Invertebrate Pathology, Society for Invertebrate Pathology, Bethesda, MD, p, 14.

    Google Scholar 

  10. Hofte, H and Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53, 242–255

    PubMed  CAS  Google Scholar 

  11. Feitelson, J S (1993) The Bacillus thuringiensis family tree, in Advanced Engineered Pesticides (Kim, L., ed.), Marcel Dekker, New York, pp 63–71.

    Google Scholar 

  12. Gaertner, F H, Sick, A J, Thompson, M., Schnepf, H. E, Schwab, G. E., and Narva, K E (1995) Probes for the identification of Bacillus thuringiensis endotoxin genes. US patent 5430137

    Google Scholar 

  13. Ceron, J, Ortiz, A., Qumtero, R., Guereca, L., and Bravo, A. (1995) Specific PCR primers directed to Identify cryI and cryIII genes within a Bacillus thuringiensis strain collection Appl Environ Microbiol 61, 3826–3831

    PubMed  CAS  Google Scholar 

  14. Kuo, W-S. and Chak, K-F. (1996) Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amphfied DNA. Appl. Environ Microbiol 62, 1369–1377.

    PubMed  CAS  Google Scholar 

  15. Tabashnik, B. (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39, 47–79.

    Article  Google Scholar 

  16. Baum, J A and Malvar, T. (1995) Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol 18, 1–12

    Article  PubMed  CAS  Google Scholar 

  17. Agaisse, H and Lereclus, D. (1995) How does Bacillus thuringrensis produce so much insecticidal crystal protein? J Bacteriol. 177, 6027–6032

    PubMed  CAS  Google Scholar 

  18. Schnepf, H. (1995) Bacillus thuringiensis toxins. regulation, activities and structural diversity Curr Opin Biotech 6, 305–312

    Article  CAS  Google Scholar 

  19. Thompson, M A, Schnepf, H E, and Feltelson, J S. (1995) Structure, function, and engineering of Bacillus thuringrensis toxins, in Genetic Engineering, vol 17 (Setlow, J K, ed), Plenum, New York, pp 99–117

    Google Scholar 

  20. Dulmage, H. T (1970) Insecticidal activity of HD-1, a new Isolate of Bacillus thuringiensis var alestl J Invert Pathol 15, 232–239

    Article  Google Scholar 

  21. Goldberg, L J and Margalit, J (1977) A bacterial spore demonstratmg rapid larvicidal activity against Anopheles sergentli, Uranotaenza ungulculata, Culex unlvltattus, Aedes aegyptl, and Culexpiplens Mosquito News 37, 355–358

    Google Scholar 

  22. Krieg, A, Huger, A M, Langenbruch, G. A, and Schnetter, W (1983) Bacillus thuringiensis var. tenebrionis Em neuer, gegenuber Larven Von Coleopteren wlrksamer Pathotyp Z Ang Entomol 96, 500–508

    Article  Google Scholar 

  23. Twardus, D (1989) USDA forest service gypsy moth aerial suppression/eradication projects-1989 Gypsy Moth News 20, 2.

    Google Scholar 

  24. Bowen, personal communication

    Google Scholar 

  25. Becker, N and Margaht, J. (1993) Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies, in Bacillus thuringiensis, an Environmental Biopesticide Theory and Practice (Entwistle, P F, Cory, J S, Bailey, M. J, and Higgs, S, eds), Wiley, New York, pp 255–267

    Google Scholar 

  26. Morris, O N (1983) Protectlon of Bacillus thuringiensis from inactivation by sunlight Can Entomol 115, 1215–1227

    Article  Google Scholar 

  27. Gelerntner, W (1990) Targeting insecticide-resistant markets New developments in microbial-based products, in Managing Resistance to Agrochemicals From Fundamental Research to Practical Strategies (Green, M B, LeBaron, H M, and Moberg, W K, eds), American Chemical Society, Washington, DC, pp 105–117

    Chapter  Google Scholar 

  28. Gaertner, F (1990) Cellular delivery systems for insecticidal proteins. living and non-living microorganisms, in Controlled Delivery of Crop Protectton Agents (Wllkins, R M, ed), Taylor and Francis, London, pp 245–257

    Google Scholar 

  29. Pozsgay, M, Fast, P. G., Kaplan, H, and Carey, P (1987) The effect of sunlight on the protein crystals from Bacillus thurinngiensis subsp. kurstaki HD1 and NRD12, a Raman spectroscopy study J Invert Pathol 50, 246–253

    Article  CAS  Google Scholar 

  30. Pusztal, M, Fast, P, Grmgorten, L, Kaplan, H., Lessard, T, and Carey, P R (1991) The mechanism of sunlight-mediated inactivation of Bacillus thuringiensis crystals Biochem J 273, 43–47

    Google Scholar 

  31. Lee, M K, Curtiss, A, Alcantara, E, and Dean, D H (1996) Synergistic effect of the Bacillus thuringiensis toxins CryIAa and CryIAc on the gypsy moth, Lymantria dispar Appl Environ. Microbiol 62, 583–586

    CAS  Google Scholar 

  32. Bradfisch, G A, Thompson, M, and Schwab, G E. (1996) Pesticidal compostions US patent 5508264

    Google Scholar 

  33. Chang, C, Yong-Man, Y, Shu-Mei, D, Law, S. K, and Gill, S. S. (1993) High level cryIVD and crytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes Appl Environ Microbiol 59, 815–821

    PubMed  CAS  Google Scholar 

  34. Crickmore, N, Bone, E J, Willams, J A., and Ellar, D J (1995) Contribution of the individual components of the γ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp uraelensis. FEMS Microbiol Lett 131, 249–254

    CAS  Google Scholar 

  35. Wu, D, Johnson, J J, and Fedencl, B A. (1994) Synergism of mosqultocldal toxicity between CytA and CryIVD proteins using mclusons produced from cloned genes of Bacillus thurmglensu. Mol Microbiol 13, 965–912

    Article  PubMed  CAS  Google Scholar 

  36. Moar, W J., Trumble, J T, and Fedencl, B A (1989) Comparative toxicity of spores and crystals from the NRD12 and HD1 strams of Bacillus thuringiensis subsp kurstakr to neonate beet armyworm (Lepidoptera Noctuldae). J Econ. Entomol 82, 1593–1603

    CAS  Google Scholar 

  37. Moar, W. J, Pusal-Carey, M., Van Faassen, H., Bosch, D., Frutos, R, Rang, C, Luo, K, and Adang. M. J (1995) Development of Bacillus thurzngrensls CryIC resistance by Spodoptera exzgua (Hubner) (Lepldoptera Noctuidae). Appl Environ Mtcrobiol 61, 2086–20

    CAS  Google Scholar 

  38. Dubols, N and Dean, D H (1995) Synergism between CryIA msectlcldal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores, and vegetative cells agamst Lymantria dispar (Lepldoptera Lymantnidae) larvae Environ Entomol 24, 174 1–1747

    Google Scholar 

  39. Tang, J D, Shelton, A. M, Van Rie, J, De Roeck, S, Moar, W. J., Roush, R T, and Peferoen, M. (1996) toxicity of Bacillus thuringiensispore and crystal protem to rests-tant dlamondback moth (Plutella xylostella). Appl. Environ Microbiol 62, 564–569

    PubMed  CAS  Google Scholar 

  40. Warren, G W, Kozlel, M. G, Mullms, M A., Nye, G J, Carr, B., Desal, N M.,et al (1996) Novel pesticidal protems and strams. Patent WO 96/10083. World Intellectual Property Organization

    Google Scholar 

  41. Beegle, C. C and Yamamoto, T. (1992) History of Bacillus thuringiensis Berlmer Research and Development Can Ent 124, 587–616

    Article  Google Scholar 

  42. LIU, C-L, Manker, D. C, Macmullan, A. M., Lufburrow, P A., and Starnes, R L.(1995) Novel pestlcidal composition and Bacillus thunngzensu strain Patent WO 95/25 18 1. World Intellectual Property Organization

    Google Scholar 

  43. Stabb, E V, Jacobson, L M., and Handelsman, J. (1994) Zwlttermlcm A-producing strains of Bacillus cereus from diverse soils. Appl Environ Microbiol 60, 4404–4412.

    PubMed  CAS  Google Scholar 

  44. Manker, D C, Lidster, W. D., Starnes, R L., and Macintosh, S. C. (1994) Potentlator of Baczllus pestlcldal actlvlty. Patent WO 94/09630 World Intellectual Property Orgamzation.

    Google Scholar 

  45. Kronstad, J. W, Schnepf, H. E, and Whlteley, H R. (1983) Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bactenol. 154, 419–428

    CAS  Google Scholar 

  46. Carlton, B C and Gonzalez, J M, Jr(1985) Plasmids and delta-endotoxin production in different subspecies of Bacillus thunngzensu, in Molecular Bzology of Microbal Differentiation (Hoch, J A., and Setlow, P, eds), American Society for Microbiology, Washington, DC, pp. 246–252

    Google Scholar 

  47. González, J M, Jr and Carlton, B C (1982) Plasmid transfer in Baczllus thurmglenszs, in Genetic Exchange A Celebration and a New Generation (Strelps, U N, Goodgal, S H., Gmld, W R, and Wilson, G A, eds), Marcel-Dekker, New York, pp 85–95

    Google Scholar 

  48. González, J M., Jr,Brown, B J., and Carlton, B. C (1982) Transfer of Bacillus thuringiensu plasmlds codmg for endotoxm among strams of B thurznglensu and B itcereus. Proc Nat1 Acad Scl USA 79, 6951–6955.

    Article  Google Scholar 

  49. Gawron-Burke, C. and Baum, J (1991) Genetic manipulation of Baczllus thuringzensis insecticidal crystal protein genes in bacteria, in Genetic Engzneering (Setlow, J. K, ed.), Plenum, New York, pp 237–263

    Google Scholar 

  50. Lecadet, M-M, Chaufaux, J, Ribier, J, and Lereclus, D (1992) Construction of novel Bacillus thuringiensis strains with different insecticidal specificities by transduction and transformation. Appl Environ Microbiol 58, 840–849

    PubMed  CAS  Google Scholar 

  51. Baum, J A., Coyle, D. M., Jany, C S., Gilbert, M P., and Gawron-Burke, C (1990) Novel cloning vectors for Bacillus thuringiensis Appl Environ Microbiol 56, 3420–3428

    PubMed  CAS  Google Scholar 

  52. Arantes, 0. and Lereclus, D. (1991) Construction of cloning vectors for Bacillus thuringiensis. Gene 108, 115–119.

    Article  PubMed  CAS  Google Scholar 

  53. Chak, K-F, Tseng, M-Y, and Yamamoto, T (1994) Expression of the crystal protein gene under the control of the α-amylase promoter in Bacillus thuringiensis strains Appl Environ Mirobiol 60, 2304–2310

    CAS  Google Scholar 

  54. Lereclus, D, Vallade, M, Chaufaux, J., Arantes, O., and Rambaud, S. (1992) Expansion of the insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Bio/Technology 10, 418–421

    Article  PubMed  CAS  Google Scholar 

  55. Adams, L. F, Mathewes, S, O’Hara, P, Petersen, A., and Gurtler, H (1994) Elucidation of the mechanism of CryIIIA overproduction in a mutagenized strain of Bacillus thuringiensis var tenebrionis Mol Microbiol 14, 381–389

    Article  PubMed  CAS  Google Scholar 

  56. Kalman, S, Kiehne, K. L, Cooper, N, Reynoso, M S, and Yamamoto, T (1995) Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes Appl Environ Microbiol 61, 3063–3068

    PubMed  CAS  Google Scholar 

  57. Villafane, R., Bechhofer, D H, Narayanan, C S, and Dubnau, D (1987) Rephcation control genes of plasmld pE 194 J Bacteriol. 169, 4822–4829.

    PubMed  CAS  Google Scholar 

  58. Delecluse, A, Charles, J-F., Kher, A., and Rapoport, G (1991) Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity J Bacteriol 173, 3374–3381

    PubMed  CAS  Google Scholar 

  59. Poncet, S., Anello, G., Delecluse, A., Klier, A., and Rapoport, G (1993) Role of the CryIVD polypeptide in the overall toxicity of Bacillus thuringiensis subsp israelensis Appl Environ Microbiol. 59, 3928–3930

    PubMed  CAS  Google Scholar 

  60. Malvar, T, Gawron-Burke, C, and Baum, J. A (1994) Overexpression of Bacillus thuringiensis HknaA, a histidine protein kinase homolog, bypasses early Spomutations that result in CryIIIA overproduction. J Bacteriol 176, 4742–4749

    PubMed  CAS  Google Scholar 

  61. Lereclus, D, Agaisse, H, Gominet, M, and Chaufaux, J. (1995) Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spoOAmutant. Bio/Technology 13, 67–71.

    Article  PubMed  CAS  Google Scholar 

  62. Tan, Y. and Donovan, W (1995) Cloning and characterization of the alkaline protease gene of Bacillus thuringiensis, in Abstracts of the 95th Annual Meeting of the Amercian Society for Microbiology, American Society for Microbiology, Washington, DC, p 406

    Google Scholar 

  63. Malvar, T. and Baum, J A. (1994) Tn5401 disruption of the spo0F gene, Identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis. J Bacteriol 176, 4750–4753

    PubMed  CAS  Google Scholar 

  64. Baum, J A., Kakefuda, M, and Gawron-Burke, C (1996) Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol 62, 4367–4373.

    PubMed  CAS  Google Scholar 

  65. Baum, J A (1994) Tn5401, a new class II transposable element from Bacillus thuringiensis. J Bacteriol 176, 2835–2845.

    PubMed  CAS  Google Scholar 

  66. Baum, J. A. (1995) Tnpl recombinase. identification of sites within Tn5401 required for TnpI binding and site-specific recombination J Bacteriol 177, 4036–4042

    PubMed  CAS  Google Scholar 

  67. Sanchis, V., Agaisse, H, Chaufaux, J., and Lereclus, D (1997) A recombinasemedtated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microbiol 63, 779–784

    PubMed  CAS  Google Scholar 

  68. Gurtler, H. and Petersen, A. (1991) Mutants or variants of Bacillus thuringiensis producing high yields of delta endotoxin Patent WO 91/07481. World Intellectual Property Organization

    Google Scholar 

  69. Federal Register (1994) Vol. 59, No. 143, p 38,174

    Google Scholar 

  70. Johnson, T, Hannan, R, Gouger, R., Colbert, F, Jany, C, Jelen, A, and Baum, J (1995) Development of CRYMAX® WDG— a recombinant BT product for control of vegetable insect pests. Program and Abstracts, 28th Annual Meeting, Society for Invertebrate Pathology, p. 32.

    Google Scholar 

  71. Cerf, D, Kalman, S., Cooper, N, Shahabi-Reynoso, M., and Yamamoto, T (1995) Small scale field trials of recombinant Bacillus thuringiensis in California Program and Abstracts, 28th Annual Meeting, Society for Invertebrate Pathology, p 12

    Google Scholar 

  72. Dulmage, H T, Beegle, C C., de Barjac, H, Reich, D., Donaldson, G, and Krywienczyk, J (1982) Bacillus thuringiensis cultures available from the U S Department of Agriculture, in U S D A-A R.S Agricultural Reviews and Manuals, ARM-S-30/0ct 1982 U S Department of Agriculture, Agricultural Research Service, New Orleans

    Google Scholar 

  73. Sanchis, V., Agaisse, H, Chaufaux, J., and Lereclus, D (1996) Construction of new insecticidal Bacillus thuringiensis recombinant strains using the sporulation non-dependent expression system of cryIIIA and a site specific recombination vector J Biotechnol 48, 81–96

    Article  PubMed  CAS  Google Scholar 

  74. Rajamohan, F, Alzate, O., Cotrill, J A, Curtiss, A., and Dean, D H (1996) Protein engineering of Bacillus thuringiensis δendotoxin: mutations at domain II of CryIAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Nat1 Acad Sci USA 93, 14,338–14,343

    Google Scholar 

  75. Bosch, D, Schipper, B, Van der Klelj, H., de Maagd, R A, and Stiekema, W J. (1994) Recombinant Bacillus thuringiensis crystal proteins with new properties possibiltites for resistance management. Bio/Technology 12, 915–918.

    Article  PubMed  CAS  Google Scholar 

  76. de Maagd, R A, Kwa, M. S G., Van der Kleij, H, Yamamoto, T, Schipper, B, Vlak, J M, Stiekema, W. J, and Bosch, D (1996) Domain III substitution in Bacillus thuringiensis delta-endotoxm CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition Appl. Environ Microbiol 62, 1537–1543

    PubMed  Google Scholar 

  77. McGaughey, W H and Whalon, M E (1992) Managing resistance to Bacillus thuringiensis toxins Science 258, 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  78. Baum, J. A and Gilbert, M P (1991) Characterization and comparative sequence analysis of replication origins from three large Bacillus thuringiensis plasmids J Bacteizol. 173, 5280–5289

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Baum, J.A., Johnson, T.B., Carlton, B.C. (1999). Bacillus thuringiensis. In: Hall, F.R., Menn, J.J. (eds) Biopesticides: Use and Delivery. Methods in Biotechnology, vol 5. Humana Press. https://doi.org/10.1385/0-89603-515-8:189

Download citation

  • DOI: https://doi.org/10.1385/0-89603-515-8:189

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-515-7

  • Online ISBN: 978-1-59259-483-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics