Skip to main content

Animal Models of Neurological Disorders

  • Protocol
In Vivo Neuromethods

Part of the book series: Neuromethods ((NM,volume 32))

  • 414 Accesses

Abstract

Of primary concern to an investigator of neurological disorders is that of the selection of the most relevant animal model to achieve his or her research goals. According to Kornetsky (1977), three different types of animal models are typically used in medical research. Homologous models are those in animals which the etiology, symptoms, and outcome of the model duplicate those of the human disorder in every major aspect. Isomorphic models are those that resemble the human disorder, but are artificially produced in the laboratory in a way that does not reflect normal human etiology, and predictive models are those that do not necessarily resemble the human disorder in many respects, but are valuable in terms of predicting some aspect of the disorder such as the response to various drugs. The selection of the model depends on the goal of the experimenter. A predictive model allows the investigator to make certain predictions about the disorder it models; an isomorphic model permits not only predictions, but also allows the study of underlying mechanisms; and a homologous model serves as a basis for studying all aspects of a disorder, including its causes. Once the purpose of the experiment is defined, the type of model to be selected becomes apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, M S and McCandless, D. W (1992) The kindling model of epilepsy, in Neuromethods vol 22 Animal Models of Neurological Disease, II, (Boulton, A A, Baker, G B, and Butterworth, R F, eds), Humana, Clifton, NJ, pp 153–168

    Google Scholar 

  • Antal, A. and Bodis-Wollner, I (1993) Animal models of Alzheimer’s, Parkinson’s and Huntington’s disease A minireview Neurobiology 1, 101–122.

    PubMed  CAS  Google Scholar 

  • Beal, M. F, Kowall, N W, Ellison, D W, Mazurek, M F, Swartz, K J, and Martin, J B (1986) Replication of the neurochemical characteristics of Huntington’s disease by qumolinic acid Nature 321, 168–171

    Article  PubMed  CAS  Google Scholar 

  • Beal, M F, Kowall, N. W, Swartz, K. J, Ferranti, R J, and Martin, J. B (1988) Systemic approaches to modifying lesions in rats J Neurosa 8, 3901–3908

    CAS  Google Scholar 

  • Bedard, P J, Boucher, R, Gomez-Mancilla, B, and Blanchette, P. (1992) Primate models of Parkinson’s disease, in Neuromethods, vol 21 Animal Models of Neurological Disease, I, (Boulton, A A., Baker, G B., and Butterworth, R F., eds.), Humana, Clifton, NJ, pp 159–173.

    Chapter  Google Scholar 

  • Borlongan, C V., Cahill, D W, and Sanberg, P R. (1995) Locomotor and passive avoidance deficits followign occlusion of the middle cerbral artery Physiol Behav 58, 909–917

    Article  PubMed  CAS  Google Scholar 

  • Buonnamici, M, Maj, R., Pagani, F, Rossi, A. C, and Khazan, N (1986) Tremor at rest episodes in unilaterally 6-OHDA-induced substantia nigra lesioned rats. EEG-EMG and behavior Neuropharmacology 25, 323–325

    Article  Google Scholar 

  • Burns, R S, Chiueh, C. C, Marky S P., Ebert M H, Jacobowitz, D M., and Kopin, I J (1983) A primate model of parkinsonism selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by l-methyl-4-phenyl-l, 2, 3, 6-tetrahydropyridine. Proc Natl Acad Set USA 80, 4546

    Article  CAS  Google Scholar 

  • Butterworth, R. F, Belanger, F, and Barbeau, A (1978) Hypokinesia produced by anterolateral hypothalamic 6-hydroxydopamine lesions and its reversal by some antiparkinson drugs Pharmacol Biochem Behav 8, 41–45

    Article  PubMed  CAS  Google Scholar 

  • Collerton, D (1986) Cholinergic funtion and intellectual decline in Alzheimer’s disease Neuroscience 19, 1–28

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J. T, Price, D. L., and Delong, M R (1983) Alzheimer’s disease a disorder of cortical cholinergic innervation Science 219, 1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Crowther, R A (1995) Steps towards a mouse model of Alzheimer’s disease Bwessays 17, 593–595

    CAS  Google Scholar 

  • Date, I and Ohmoto, T (1995) Neural transplantation and trophic factors in Parkinson’s disease special reference to chromaffin cell grafting, NGF support from pretransected peripheral nerve, and encapsulated dopamine-secreting cell grafting. Exp Neurol 137, 333–344.

    Article  Google Scholar 

  • Dietrich, W D (1994) Morphological manifestations of reperfusion injury in brain Ann NY Acad Set 723, 15–24

    Article  CAS  Google Scholar 

  • Dunnett, S B, and Svendsen, C N (1993) Huntington’s disease animal models and transplantation repair Cur Opin Neurbiol 3, 790–796

    Article  CAS  Google Scholar 

  • Duvoisin, R C and Marsden, C D. (1974) Reversal of reserpine-induced bradykinesia by a-methyldopa’ new light on its modus operandi Brain Res 71, 178–182

    Article  PubMed  CAS  Google Scholar 

  • Dworsky, S and McCandless, D W (1987) Regional cerebral energy metabolism in bicucuhne-induced seizures Neurochem Res 12, 237–240

    Article  PubMed  CAS  Google Scholar 

  • Emench, D W and Sanberg, P. R (1992) Animal models of Huntington’s disease, in Neuromethods vol 21 Animal Models of Neurological Disease, I, (Boulton, A A., Baker, G B., and Butterworth, R. F, eds), Humana, Clifton, NJ, pp 65–134

    Google Scholar 

  • Flamm, E. S, Demopoulos, H B., Sehgman, M. L, Poser, R. G, and Ransohoff, J. (1978) Free radicals in cerebral ischemia Stroke 9, 445–447

    PubMed  CAS  Google Scholar 

  • Futrell, N, Watson, B D, Dietrich, W D., Prado, R., Milhkan, C, and Ginsberg, M. D (1988) A new model of embolic stroke produced by photochemical injury to the cartotid artery in the rat. Ann Neurol 23, 251–257

    Article  PubMed  CAS  Google Scholar 

  • Games, D, Adams, D., Alessandnni, R., Barbour, R., Berthelette, P., Blackwell, C, Carr, Tv Clemens, J, Donaldson, T., and Gillespie, F (1995) Alzheimertype neuropathology in transgenic mice overpespressing V717F beta-amyloid precursor protein Nature 373, 523–527.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg, M D and Busto, R. (1989) Rodent models of cerebral ischemia Stroke 20, 1627–1642

    PubMed  CAS  Google Scholar 

  • Goldstein, J M, Barnett, A, and Mahck, J B (1975) The evaluation of antiparkinson drugs on reserpine-induced rigidity m rats Eur Pharmacol 33, 183–188

    CAS  Google Scholar 

  • Graham, D I., Bell, J. E, and Irnoside, J. W (1995) Color Atlas and Test of Neuropathology Mosby-Wolfe, London, pp 109, 113

    Google Scholar 

  • Graham, D I and Lantos, P L, eds (1997) Greenfields’s Neuropathology, 6th ed Arnold, London, pp 329, 825

    Google Scholar 

  • Hallmayer, D, Hossmann, K-A, and Mies, G (1985) Low dose of barbituates for prevention of hippocampal lesions after brief ischemic episodes Acta Neuropathol (Berl) 68, 27–31

    Article  CAS  Google Scholar 

  • Harrison, B M and McDonald, W I (1977) Remyehnation after transient experimental compression of the spinal cord Ann Neurol 1, 542–551

    Article  PubMed  CAS  Google Scholar 

  • Hernandez, N E, Macdonall, J S, Stier, C T, Belmonte, A, Fernandez, R, and Karpiak, S E (1994) GM1 ganglioside treatment of spontaneously hypertensive stroke prone rats Exp Neurol 126, 95–100

    Article  PubMed  CAS  Google Scholar 

  • Holtzman, D M, Li, Y W, Dearmond, S J, McKmley, M P, Gage, F H, Epstein, C J, and Mobley (1992) Mouse model of neurodegeneration atrophy of basal forebrain cholinergic neurons m trisomy 16 transplants Proc Nat Acad Sa USA 89, 11383–11387

    Google Scholar 

  • Hornykiewicz, O and Kish, S J (1986) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45, 19–34

    Google Scholar 

  • Hyman, B T, Van Hoesen, G W, Damasio, A R, and Barnes, C L (1984) Alzheimer’s disease cell-specific pathology isolates the hippocampal formation Science 225, 1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Jarrard, L E, Kant, G J, Meyerhoff, J L, and Levy, A (1984) Behavioral and neurochemical effects of intraventricular AF64A administration in rats Pharmacol Bwchem Behav 21, 273–280

    Article  CAS  Google Scholar 

  • Johcoeur, F B, Rivest, R., and Drumheller, A (1991) Hypokinesia, rigidity and tremor induced by hypothalamic 6-OHDA lesions in the rat Brain Res Bull 26, 317–320

    Article  Google Scholar 

  • Kagstrom, E, Smith, M.-L, and Siesjo, B K (1983) Cerebral circulatory responses to hypercapnia and hypoxia in the recovery period following complete and incomplete cerebral ischemia in the rat Acta Physiol Scand 118, 281–291

    Article  PubMed  CAS  Google Scholar 

  • Kahn, K (1972) The natural course of experimental cerebral infarction in the gerbil Neurology 22, 510–515

    PubMed  CAS  Google Scholar 

  • Kitagawa, K., Matsumoto, M, Handa, N, Fukunaga, R, Ueda, A., Isaka, Y, Kimura, K, and Kamada, T (1989) Prediction of stroke-prone gerbils and their cerebral circulation. Brain Res 479, 263–269

    Article  PubMed  CAS  Google Scholar 

  • Kogure, K, Busto, R, Scheinberg, P, and Reinmuth, O M (1974) Energy metabolites and water content in rat brain during the early stage of development of cerebral infarction Brain 97, 103–114

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C and Schwarcz, R. (1983) Comparison of lbotenate and kainate neurotoxicity in rat brain a histological study Neuroscience 8, 819–835

    Article  PubMed  CAS  Google Scholar 

  • Kornetsky, C (1977) Animal models promises and problems in Animal Models in Psychiatry and Neurology, (Hanin, I and Usdin, E, eds), Pergamon, Oxford, pp 18–29.

    Google Scholar 

  • Kudo, M., Aoyama, A, Ichimon, S, and Fukanaga, N (1982) An animal model of cerebral infaction Homologous blood clot emboli in rats Stroke 13, 505–508

    PubMed  CAS  Google Scholar 

  • Lumsden, C E (1970) The neuropathology of multiple sclerosis, in Multiple sclerosis and Other Demyehnating Diseases Handbook of Clinical Neurology, (Vinken, P. J. and Bryun, G W., eds), North Holland Publishing, Amsterdam, pp. 217–209.

    Google Scholar 

  • Lyden P D and Lonzo L (1994) Combination therapy protects ischemic brain in rats. A glutamate antagonist plus a gamma-aminobutyric acid antagonist Stroke 25, 189–196

    PubMed  CAS  Google Scholar 

  • Markowska, A L, Stone, W S, Ingram, D. K., Reynolds, J., Gold, P E, Conti, L H, Pontecorvo, M I, Wenk, G L., and Olton, D S (1989) Individual differences in aging-behavioral and neurobiological correlates Neurobiol Aging 10, 31–43

    Article  PubMed  CAS  Google Scholar 

  • McCandless, D. W and Abel, M S (1992) Genetically based animal models of seizures, in Neuromethods vol 22, Animal models of Neurological Disease, II, (Boulton, A A, Baker, G B, and Butterworth, R F., eds), Humana, Clifton, NJ, pp 169–182

    Google Scholar 

  • McGeer, P L and McGeer, E G (1982) Kainic acid’ the neurotoxic breakthrough CRC Cut Rev Toxicol 10, 1–26

    Article  CAS  Google Scholar 

  • Mori, N. and Wada, J A. (1987) Bidirectinal transfer between kindling induced by excitatory amino acids and electrical stimulation Brain Res 425, 45–48

    Article  PubMed  CAS  Google Scholar 

  • Nowak, T S (1985) Synthesis of a stress protein following transient ischemia in the gerbil J Neurochem 45, 1635–1641

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, M D and Waltz, A G (1973) Transorbital approach for occluding the middle cerebral artery without craniotomy Stroke 4, 201–206

    PubMed  Google Scholar 

  • Olfert, E D (1992) Ethics of animal models of neurological diseases, in Neuromethods, vol 21, Animal Models of Neurological Disease, I, (Boulton, A A, Baker, G B, and Butterworth, R F, eds), Humana, Clifton, NJ, pp 1–28

    Chapter  Google Scholar 

  • Pendlebury, W W., Beal, M F, Kowall, N W, and Soloman, P R (1988) Neuropathology, neurochemical and immunocytochemical characertisitics of aluminum-induced neurofilamentous degeneration Neurotoxicology 9, 503–510

    PubMed  CAS  Google Scholar 

  • Poirier, L J. (1960) Experimental and histological study of midbrain dyskinesias J Neurophyswl 23, 534–551-

    CAS  Google Scholar 

  • Poirier, L. J and Sourkes, T L (1965) Influence of the substantia nigra on the catecholamine content of the striatum Brain 88, 181–182

    Article  PubMed  CAS  Google Scholar 

  • Pontecorvo, M J, Wenk, G L, and Olton, D S (1989) Individual differences in aging behavioral and neurobiolgical correlates Neurobiol Aging 10, 31–43

    Article  PubMed  Google Scholar 

  • Post, R M, Kennedy, C, Shinohara, M, Squillace, K., Miyaoko, M, Suda, S, Inguar, D H, and Sokoloff, L (1984) Metabolic and behavioral consequences of lidocaine-kindled seizures. Brain Res. 324, 295–303.

    Article  PubMed  CAS  Google Scholar 

  • Post, R. M., Weiss, S R B, and Pert, A (1988) Cocaine-induced behavioral sensitization and kindling implications for the emergence of psychopathology and seizures Ann NY Acad Set. 537, 292–308

    Article  CAS  Google Scholar 

  • Preston, G C, Brazell, C, Ward, C, Boks, P., Traub, M., and StahL S. M. (1989) The scopolamine model of dementia determination of central chohnomimentic effects of physostigmme on cognition and biochmical marker in man. J Psychopharmacol 2, 67–79

    Article  Google Scholar 

  • Price, D. L (1986) New perspectives on Alzheimer’s disease Ann Rev Neurosci 9, 489–512

    Article  PubMed  CAS  Google Scholar 

  • Private, A, Jacque, C, and Bourre, J M (1979) Absence of the major dense line m myelin of the nutant mouse’ shiverer’ Neurosci Lett 12, 107–112

    Article  Google Scholar 

  • Przedborski, S, Levivier, M, Jiang, H, Ferreira, M, Jackson-Lewis, V, Donaldson, D, and Togasaki, D M (1995) Dose-dependent lesions of the dopaminergic nigrostnatal pathway induced by intrastnatal injection of 6-hydroxydopamine Neurosaence 67, 631–647

    Article  CAS  Google Scholar 

  • Rapp, P R, Rosenberg, R. A., and Gallagher, M (1987) An evaluation of spatial information processing in aged rats Behav Neurosci 101, 3–12

    Article  PubMed  CAS  Google Scholar 

  • Roach, A, Boylan, K and Horvath, S (1983) Characterization of cloned DNA representing rat myelin basic protein absence of expression in Shiverer mutant mice Cell 34, 799–806

    Article  PubMed  CAS  Google Scholar 

  • Rondeau, D B, Johcoeur, F B, Belanger, F, and Barbeau, A (1978) Differential behavioral activities from anterior and posterior hypothalamic lesions in the rat. Pharmacol Bwchem Behav 9, 43–47

    Article  CAS  Google Scholar 

  • Rosenbluth, J (1980) Central myelin in the mouse mutant shiverer J Comp Neurol 194, 639–648

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P R, Koutouzis, T K, Freeman, T B, Cahill, D W, and Norman, A B (1993) Behavioral effects of fetal neural transplants relevance to Huntington’s disease Brain Res Bull 32, 493–496

    Article  PubMed  CAS  Google Scholar 

  • Scaravilh, F (1985) Twitcher a neurological mutant mouse with globoid-cell leukodystrophy, in The Pathology of the Myelinated Axon, (Masazumi, A, Hirano, A and Aronson, S M, eds), Igaku-Shoin, New York, pp 150–176

    Google Scholar 

  • Schulz, J B and Beal, M F (1994) Mitochondrial dysfunction in movement disorders Curr Opin Neurol 7, 333–339

    Article  PubMed  CAS  Google Scholar 

  • Selman, W R, Ricci, A J, Crumnne, R C, LaManna, J C, Ratcheson, R A, and Lust, W D (1990) The evolution of focal ischemic damage a metabolic analysis Metab Brain Dis 5, 33–44

    Article  PubMed  CAS  Google Scholar 

  • Seta, K A, Crumnne, C R, Whittingham, T S, Lust, W D, and McCandless, D W (1992) Experimental models of human stroke, in Neuromethods vol 22 Animal Models of Neurological Disease, II (Boulton, A A, Baker, G B, and Butterworth, R F, eds) Humana, Clifton, NJ, pp 1–50

    Chapter  Google Scholar 

  • Shigeno, T, Teasdale, G M, McCulloch, J, and Graham, D I. (1985) Recirculation model following MCA occlusion in rats J Neurosurg 63, 272–277

    Article  PubMed  CAS  Google Scholar 

  • Sidman, R. L, Dickie, M. M., and Appel, S. H (1964) Mutant mice (Quaking and Jimpy) with deficient myehnation in the central nervous system Science 144, 309–311

    Article  PubMed  CAS  Google Scholar 

  • Smith, M-L., Auer, R N, and Siesjo, B K (1984) The density and distribution of ischemic brain injury in the rat following 20-10 mm of forebrain ischemia Acta Neuropathol (Berl) 64, 319–332

    Article  CAS  Google Scholar 

  • Smith, G P, Strohmayer, A J, and Reis, D J (1972) Effect of lateral hypothalamic injections of 6-hydroxydopamine on food and water intake in rats Nature 235, 27–29

    Article  CAS  Google Scholar 

  • Troncoso, J C, Price, D L, Griffin, J W, and Parhad, I M (1982) Neurofibrillary axonal pathology in aluminum intoxication Ann Neurol 12, 278–283

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U, Avemo, A, Avemo, E, Ljungber, T, and Range, C (1973) Animal models of parkinsonism Adv Bwchem Psychopharmacol 9, 707–715

    Google Scholar 

  • Vonsattel, J-P, Myers, R H, and Stevens, T J (1985) Neuropathological classification of Huntington’s disease J Neuropathol Exp Neurol 44, 559–577

    Article  PubMed  CAS  Google Scholar 

  • Von Voightlander, P F and Moore, K E (1973) Turning behavior in mice with unilateral 6-hydroxydopamine lesions in the striatum effects of apomorphine L-DOPA, amantadine, amphetamine and other psychomotor stimulants Neuropharmacology 12, 451–462

    Article  Google Scholar 

  • Welch, F. A., Sakamoto, T, McKee, A E, and Sims, R (1987) Effect of lactacidosis on pyridine nucleotide stability during ischemia in the mouse brain J Neurochem 49, 846–851

    Article  Google Scholar 

  • Wenk, G L (1992) Animal models of Alzheimer’s disease, in Neuromethods vol 21 Animal Models of Neurological Disease, I (Boulton, A A, Baker, G B, and Butterworth, R F. eds.) Humana, Clifton, NJ, pp. 29–63

    Chapter  Google Scholar 

  • Wiederholt, W C (1995) Neurology for Non-Neurologists, 3rd ed Saunders, Philadephia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Todd, K.G., Butterworth, R.F. (1998). Animal Models of Neurological Disorders. In: In Vivo Neuromethods. Neuromethods, vol 32. Humana Press. https://doi.org/10.1385/0-89603-511-5:149

Download citation

  • DOI: https://doi.org/10.1385/0-89603-511-5:149

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-511-9

  • Online ISBN: 978-1-59259-637-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics