Skip to main content

Application of Differential Display in Studying Developmental Processes

  • Protocol
Differential Display Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 85))

Abstract

Developmental processes are intricate networks of events by which a fertilized egg proliferates and differentiates into a fully functional multicellular organism (1). Mechanisms are used by dividing cells to create asymmetries in their information content that then allow the emergence of heterogeneous cell types through differential gene expression (2,3). Most developmental processes share the following characteristics:

  1. 1.

    Consecutive steps of commitment and specialization are taken by dividing cells;

  2. 2.

    Time- and tissue-regulation of gene expression; and

  3. 3.

    Migration of specialized cells from their sites of origin to different locations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilbert, S. F., ed. (1991) Developmental Biology, Sinauer, Sunderland, MA.

    Google Scholar 

  2. Horvitz, H. R. and Herskowitz, I. (1992) Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68, 237–255.

    Article  PubMed  CAS  Google Scholar 

  3. Amon, A. (1996) Mother and daughter cell are doing fine: asymmetric cell division in yeast. Cell 84, 651–654.

    Article  PubMed  CAS  Google Scholar 

  4. Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.

    Article  PubMed  CAS  Google Scholar 

  5. Liang, P., Averboukh, L., Keyomarsi, K., Sager, R., and Pardee, A. B. (1992) Differential Display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells. Cancer Res. 52, 6966–6968.

    PubMed  CAS  Google Scholar 

  6. Liang, P., Averboukh, L., and Pardee, A. B. (1993) Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res. 18, 3269–3275.

    Article  Google Scholar 

  7. Guimaraes, M. J., Lee, F., Zlotnik, A., and McClanahan, T. (1995) Differential Display by PCR: novel findings and applications. Nucleic Acids Res. 23, 1832–1833.

    Article  PubMed  CAS  Google Scholar 

  8. Medvinsky, A. L., Samoylina, N. L., Muller, A. M., and Dzierzack, E. A. (1993) An early pre-liver intra-embryonic source of CFU-S in the developing mouse. Nature 364, 64.

    Article  PubMed  CAS  Google Scholar 

  9. Delassus, S. and Cumano, A. (1996) Circulation of hematopoietic progenitors in the mouse embryo. Immunity 4, 97–106.

    Article  PubMed  CAS  Google Scholar 

  10. Potten, C. S., ed. (1983) Stem Cells, Their Identification and Characterization. Churchill Livingstone, Edinbourgh, London, Melbourne and New York.

    Google Scholar 

  11. Evans, M. J. and Kaufman M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154.

    Article  PubMed  CAS  Google Scholar 

  12. Martin, G. R. (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  13. Robertson, E. J., ed. (1987) Teratocarcinomas and Embryonic Stem Cells, a Practical Approach. IRL, Oxford, Washington DC.

    Google Scholar 

  14. Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984) Formation of germ-line chimeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.

    Article  PubMed  CAS  Google Scholar 

  15. Doetschman, T. C, Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands, and myocardium. J. Embryol. Exp. Morphol. 87, 27–45.

    PubMed  CAS  Google Scholar 

  16. Lindenbaum, M. H. and Grosveld, F. (1990) An in vitro globin gene switching model based on differentiated embryonic stem cells. Genes Dev. 4, 2075.

    Article  PubMed  CAS  Google Scholar 

  17. Wiles, M. V. and Keller, G. (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259.

    PubMed  CAS  Google Scholar 

  18. Chen, U., Kosco, M., and Staerz, U. (1992) Establishment and characterization of lymphoid and myeloid mixed-cell populations from mouse late embryoid bodies, “embryonic-stem-cell fetuses”. Proc. Natl. Acad. Sci. USA 89, 2541–2545.

    Article  PubMed  CAS  Google Scholar 

  19. Gutierrez-Ramos, J. C. and Palacios, R. (1992) In vitro differentiation of embryonic stem cells into lymphocyte precursors able to generate T and B lymphocytes in vitro. Proc. Natl. Acad. Sci. USA 89, 9171–9175.

    Article  PubMed  CAS  Google Scholar 

  20. Keller, G., Kennedy, M., Papayannopoulou, T., and Wiles, M. V. (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13, 473–486.

    PubMed  CAS  Google Scholar 

  21. McClanahan, T., Dalrymple, S., Barkett, M., and Lee, F. (1993) Hematopoietic growth factor receptor genes as markers of lineage commitment during in vitro development of hematopoietic cells. Blood 81, 2903–2915.

    PubMed  CAS  Google Scholar 

  22. Johansson, B. and Wiles, M. V. (1995) Evidence for the involvement of activin-A and BMP-4 in mammalian mesoderm and hematopoietic development. Mol. Cell. Biol 15, 141–151.

    PubMed  CAS  Google Scholar 

  23. Nakano, T., Kodama, H., and Honjo, T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  24. Ford, A. M., Healy, L. H., Bennet, C. A., Navarro, E., Spooncer, E., and Greaves, M. F. (1992) Multilineage phenotypes of Interleukin-3-dependent progenitor cells. Blood 79, 1962–1971.

    PubMed  CAS  Google Scholar 

  25. Wong, P. M. C, Han, X.-D., Ruscetti, F. W., and Chung, S.-W. (1994) Immortalized hematopoietic cells with stem cells properties. Immunity 1, 571–583.

    Article  PubMed  CAS  Google Scholar 

  26. Orkin, S. H. (1995) Hematopoiesis: how does it happen? Curr. Opin. Cell Biol. 7, 870–877.

    Article  PubMed  CAS  Google Scholar 

  27. Guimaraes, M. J., Bazan, J. F., Zlotnik, A., Wiles, M. V., Grimaldi, J. C, Lee, F., and McClanahan, T. (1995) A new approach to the study of hematopoietic development in the yolk sac and embryoid bodies. Development 121, 3335–3346.

    PubMed  CAS  Google Scholar 

  28. Guimaraes, M. J., Bazan, J. F., Castagnola, J., Diaz, S., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Varki, A., and Zlotnik, A. (1996) Molecular cloning and characterization of lysosomal sialic-acid O-acetylesterase. J. Biol. Chem. 271, 13,697–13,706.

    Article  PubMed  CAS  Google Scholar 

  29. Guimarães, M. J., Peterson, D., Vicari, A., Cocks, B. G., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Ferrick, D. A., Kastelein, R. A., Bazan, J. F., and Zlotnik, A. (1996) Identification of a novel selD homolog from eukaryotes, bacteria and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Natl. Acad. Sci. USA 93, 15,086–15,091.

    Article  PubMed  Google Scholar 

  30. Guimaraes, M. J. and Bazau, J. F. (1997) The chess protein motif redefines relationships among genes involved in cell signaling, cell cycle regulation, chromatin function and cell division. In preparation.

    Google Scholar 

  31. Guimaraes, M. J., Hudak, S., Vicari, A., Rossi, D., Leach, M., Hill, K. E., Burk, R. F., Pina-Cabral, J. M., Rennick, D., and Bazan, J. F. (1997) Thymic atruphy and delayed kinetics of hematopoietic repopulation in selenium deficient mice. In preparation.

    Google Scholar 

  32. Ito, E., Toki, T., Ishihara, H., Ohtani, H., Gu, L., Yokoyama, M., Engel, J. D., and Yamamoto, M. (1993) Erythroid transcription factor GATA-1 is abundantly transcribed in mouse testis. Nature 362, 466.

    Article  PubMed  CAS  Google Scholar 

  33. Brannan, C. I., Dees, E. C, Ingram, R. S., and Tilghman, S. M. (1990) The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10, 28–36.

    PubMed  CAS  Google Scholar 

  34. McCarrey, J. R. and Dilworth, D. D. (1992) Expression of Xist in mouse germ cells correlates with X-chromosome inactivation. Nature Genet. 2, 200–203.

    Article  PubMed  CAS  Google Scholar 

  35. Swalla, B. J. and Jeffery, W. R. (1995) A maternal RNA localized in the yellow crescent is segregated to the larval muscle cells during ascidian development. Dev. Biol. 170, 353–364.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Guimarães, M.J., McClanahan, T., Bazan, J.F. (1997). Application of Differential Display in Studying Developmental Processes. In: Liang, P., Pardee, A.B. (eds) Differential Display Methods and Protocols. Methods in Molecular Biology, vol 85. Humana Press. https://doi.org/10.1385/0-89603-489-5:175

Download citation

  • DOI: https://doi.org/10.1385/0-89603-489-5:175

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-489-1

  • Online ISBN: 978-1-59259-569-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics