Skip to main content

Membrane Targeting via Protein N-Myristoylation

  • Protocol
Protein Targeting Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 88))

Abstract

The covalent modification of cell proteins by the attachment of myristic acid, a 14 carbon saturated fatty acid, to their N-terminal amino acid is now recognized to be a widespread phenomenon (15). The enzyme responsible for the attachment of myristic acid to these proteins is myristoyl-CoA: Protein N-myristoyltransferase (NMT; EC 2.3.1.97). This enzyme catalyzes the transfer of myristic acid from myristoyl-CoA to the N-terminal amino acid of the target protein and results in the fatty acid being amide-bonded to the α-amino group of the amino acid. Because this transfer is susceptible to protein synthesis inhibitors, it must take place as the protein is synthesized (6,7). Data from the studies on both the sequence of known myristoylated proteins, and from those on the sequence requirements for NMT, suggests that the N-terminal amino acid is always a glycine residue (5). However the other sequence requirements for protein N-myristoylation are less certain and the resulting vague general consensus sequence is summarized in Fig. 1. Although the majority of proteins that are substrates for NMT are myristoylated, the enzyme can make use of a limited range of other fatty acids, including shorter-chain and unsaturated fatty acids. In general, this occurs when these fatty acids form the majority of the acyl-CoA pool in a cell or tissue, for example, in the retina (8). For most practical purposes, however, NMT can be regarded as essentially specific for myristic acid.

Permitted sequences for N-terminal myristoylation by mammalian NMT. The single-letter nomenclature for the amino acids has been used, and the permitted residues are based on the sequences of known myristoyl-proteins, as described by Rudnick et al. (5). The glycine at position 1 is obligatory. Serine is the most common amino acid found at position 5, and increases the affinity of yeast NMT for substrate peptides, but other amino acids are found here in mammalian myristoyl-proteins. Proline has not yet been found at position 6, nor have tryptophan or tyrosine been found at positions 7 and 8. Generally, acidic residues are not found at position 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Towler, D. A., Gordon, J. I., Adams, S. P., and Glaser, L. (1988) The biology and enzymology of eukaryotic protein acylation. Ann. Rev. Biochem. 57, 69–99.

    Article  PubMed  CAS  Google Scholar 

  2. McIlhinney, R. A. J. (1990) The fats of life: the importance and function of protein acylation. TIBS 15, 387–390.

    PubMed  CAS  Google Scholar 

  3. Rudnick, D. A., McWherter, C. A., Gokel, G. W., and Gordon, J. I. (1993) Myristoyl-CoA: protein N-myristoyltransferase. Adv. Enzymol. 67, 375–435.

    PubMed  CAS  Google Scholar 

  4. Schmidt, M. F. G. and Burns, G. R. (1989) Hydrophobic modifications of membrane proteins by palmitoylation in vitro. Biochem. Soc. Trans. 17, 625,626.

    PubMed  CAS  Google Scholar 

  5. Gordon, J. I., Duronio, R. J., Rudnick, D. A., Adams, S. P., and Gokel, G. W. (1991) Protein N-myristoylation. J. Biol. Chem. 266, 8647–8650.

    PubMed  CAS  Google Scholar 

  6. McIlhinney, R. A. J., Pelly, S. J., Chadwick, J. K., and Cowley, G. P. (1985) Studies on the attachment of myristic and palmitic acid to cell proteins on human squamous carcinoma cell lines: evidence for two pathways. EMBO J. 4, 1145–1152.

    PubMed  CAS  Google Scholar 

  7. Magee, A. I. and Courtneidge, S. A. (1985) Two classes of fatty acid acylated proteins exist in eukaryotic cells. EMBO J. 4, 1137–1144.

    PubMed  CAS  Google Scholar 

  8. Dizhoor, A. M., Ericksson, L. H., Johnson, R. S., Kumar, S., Olshevsakya, E., Zozulya, S., Neubert, T. A., Stryer, L., Hurley, J. B., and Walsh, K. A. (1992) The NH2 terminus of retinal recoverin is acylated by a small family of fatty acids. J. Biol. Chem. 267, 16,033–16,036.

    PubMed  CAS  Google Scholar 

  9. Duronio, R. J., Reed, S. I., and Gordon, J. I. (1992) Mutations of human myristoyl-CoA-protein N-myristoyltransferase cause temperature-sensitive myristic acid auxotrophy in saccharomyces-cerevisiae. Natl. Acad. Sci. USA 89, 4129–4133.

    Article  CAS  Google Scholar 

  10. Rudnick, D. A., McWherter, C. A., Roegue, W. J., Lennon, P. J., Getman, D. P., and Gordon, J. I. (1991) Kinetic and structural evidence for a sequential ordered bi-bi mechanism of catalysis by saccharomyces cerevisiae myristoyl-CoA: protein N-myristoyltransferase. J. Biol. Chem. 266, 9732–9739.

    PubMed  CAS  Google Scholar 

  11. Peitzch, R. M. and McLaughlin, S. (1993) Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 32, 10,436–10,443.

    Article  Google Scholar 

  12. Buser, C. A., Sigal, C. T., Resh, M. D., and Mclaughlin, S. (1994) Membrane binding of myristylated peptides corresponding to the NH2 terminus of Src. Biochemistry 33, 13,093–13,101.

    Article  PubMed  CAS  Google Scholar 

  13. Milligan, G., Parenti, M., and Magee, A. I. (1995) The dynamic role of palmitoylation in signal transduction. Trends Biochem. Sci. 20, 181–186.

    Article  PubMed  CAS  Google Scholar 

  14. Resh, M. D. (1994) Myristylation and Palmitylation of SRC family members-the fats of the matter. Cell 76, 411–413.

    Article  PubMed  CAS  Google Scholar 

  15. Randazzo, P. A., Terui, T., Sturch, S., Fales, H. M., Ferrige, A. G., and Kahn, R. A. (1995) The myristoylated amino terminus of ADP-ribosylation factor 1 is a phospholipid-and GTP-sensitive switch. J. Biol. Chem. 270, 14,809–14,815.

    Article  PubMed  CAS  Google Scholar 

  16. Franco, M., Chardin, P., Chabre, M., and Paris, S. (1995) Myristoylation of ADP-ribosylation factor 1 facilitates nucleotide exchange at physiological Mg2+ levels. J. Biol. Chem. 270, 1337–1341.

    Article  PubMed  CAS  Google Scholar 

  17. Chow, M., Newman, J. F. E., Filman, D., Hogler, J. M., Rowlands, D. J., and Brown, F. (1987) Myristoylation of picornavirus capsid protein VP4 and its structural significance. Nature 327, 482–486.

    Article  PubMed  CAS  Google Scholar 

  18. Harris, M. and Coates, K. (1993) Identification of cellular proteins that bind to the human immunodeficiency virus type-1 nef gene product in vitro—a role for myristylation. J. Gen. Virol. 74, 1581–1589.

    Article  PubMed  CAS  Google Scholar 

  19. Resh, M. D. (1989) Specific and saturable binding of Pp60V-Src to plasma membranes—evidence for a myristyl-Src receptor. Cell 58, 281–286.

    Article  PubMed  CAS  Google Scholar 

  20. Sigal, C. T. and Resh, M. D. (1993) The ADP/ATP carrier is the 32-kilodalton receptor for an NH2-terminally myristylated Src peptide but not for pp60(src) polypeptide. Mol. Cell. Biol. 13, 3084–3092.

    PubMed  CAS  Google Scholar 

  21. Goddard, C. and Felsted, R. L. (1988) Identification of N-myristoylated proteins by reverse phase high pressure liquid chromatography of an azlactone derivative of N-myristoylglycine. Biochem. J. 253, 839–843.

    PubMed  CAS  Google Scholar 

  22. Aitken, A. (1991) Structure determination of acylated proteins, in Lipid Modification of Proteins (Hooper, N. M. and Turner, A. J., eds.), IRL, Oxford, pp. 63–88.

    Google Scholar 

  23. Neubert, T. A. and Johnson, R. S. (1995) High resolution structural determination of protein-linked acy groups, in Methods in Enzymology, vol. 250: Lipid Modifications of Proteins (Casey, P. J. and Buss, J. E., eds.), Academic, New York, pp. 487–495.

    Chapter  Google Scholar 

  24. McIlhinney, R. A. J. and Harvey, D. J. (1995) Determination of N-terminal myristoylation of proteins using a combined gas chromatographic/mass spectrometric assay of derived myristoylglycine: electron impact-induced fragmentation of acylglycine derivatives. J. Mass Spectrom. 30, 900–910.

    Article  CAS  Google Scholar 

  25. McIlhinney, R. A. J. (1992) Labelling of cells with radioactive fatty acids and methods for studying palmitoyl-acyl transferase, in Lipid Modifications of Proteins: A Practical Approach (Hooper, N. M. and Turner, A. J., eds.), IRL, Oxford, pp. 15–35.

    Google Scholar 

  26. Rudnick, D. A., Duronio, R. J., and Gordon, J. I. (1992) Methods for studying myristoyl-C0A: protein N-myristoyltransferase, in Lipid Modifications of Proteins: A Practical Approach (Hooper, N. M. and Turner, A. J., eds.), IRL, Oxford, pp. 37–59.

    Google Scholar 

  27. Knoll, L. J., Johnson, D. R., Bryant, M. L., and Gordon, J. I. (1995) Functional significance of myristoyl moeity, in Methods in Enzymology, vol. 250: Lipid Modifications of Proteins (Casey, P. J. and Buss, J. E., eds.), Academic, New York, pp. 405–435.

    Chapter  Google Scholar 

  28. McIlhinney, R. A. J., Patel, P. B., and McGlone, K. (1994) Characterization of a polyhistidine-tagged form of human myristoyl-CoA:protein N-myristoyltransferase produced in Escherichia coli. Eur. J. Biochem. 222, 137–146.

    Article  PubMed  CAS  Google Scholar 

  29. Chamberlain, J. P. (1979) Fluorographic detection of radioactivity in polyacrylamide gels with the water soluble fluor, sodium salicylate. Anal. Biochem. 98, 132.

    Article  PubMed  CAS  Google Scholar 

  30. Bonner, W. M., and Laskey, R. A. (1974) A film detection method for tritiumlabelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46, 83–88.

    Article  PubMed  CAS  Google Scholar 

  31. Laskey, R. A. and Mills, A. D. (1975) Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur. J. Biochem. 56, 335–341.

    Article  PubMed  CAS  Google Scholar 

  32. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature (London) 227, 680–685.

    Article  CAS  Google Scholar 

  33. Durino, R. J., Jackson-Machelski, E., Heuckeroth, R. O., Olins, P. O., Devine, C. S., Yonemoto, W., Slice, L. W., Taylor, S. S., and Gordon, J. I. (1990) Protein N-myristoylation in Escherichia Coli: reconstitution of a eukaryotic potein modification in bacteria. Proc. Natl. Acad. Sci. USA 87, 1506–1510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

McIlhinney, R.A.J. (1998). Membrane Targeting via Protein N-Myristoylation. In: Clegg, R.A. (eds) Protein Targeting Protocols. Methods in Molecular Biology™, vol 88. Humana Press. https://doi.org/10.1385/0-89603-487-9:211

Download citation

  • DOI: https://doi.org/10.1385/0-89603-487-9:211

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-487-7

  • Online ISBN: 978-1-59259-572-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics