Skip to main content

GC-Rich Template Amplification by Inverse PCR

DNA Polymerase and Solvent Effects

  • Protocol
PCR Cloning Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 67))

  • 7452 Accesses

Abstract

The amplification of GC-rich templates by any PCR method is usually a difficult task and despite the development of modified methods and conditions, this type of amplification still remains a specific case approach. Problems usually observed with GC-rich DNA are constraint of template amplification by stable secondary structures that stall or reduce the DNA polymerase progress, and the presence of secondary annealing sites giving rise to nonspecific amplified bands. This latter point is not exclusive to GC-rich templates but is frequently encountered in other types of templates. In order to design a more general method for GC-rich templates, different DNA polymerases were compared in combination with different organic solvents with the purpose of abolishing stable secondary structures (1). Our attention focused on the inverse polymerase chain reaction (iPCR) used to perform site-directed mutagenesis (1,2). This very attractive method requires a single pair of primers and involves the amplification of the whole recombinant plasmid, a difficult step with high GC-content DNA. Inverse PCR also proves useful in cloning missing parts of genes by using a self-ligated genomic DNA fragment as template.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreau, A., Duez, C., and Dusart, J. (1994) Improvement of GC-rich template amplification by inverse PCR. BioTechniques 17, 233,234.

    Google Scholar 

  2. Ochman, H., Gerber, A. S., and Hartl, D. L. (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623.

    CAS  PubMed  Google Scholar 

  3. Bookstein, R., Lai, C.-C., To, H., and Lee, W. H. (1990) PCR-based detection of a polymorphic BamHI site in intron I of the human retinoblastoma (RB) gene. Nucleic Acids Res. 18, 1666.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Winship, P. R. (1989) An improved method for directly sequencing PCR amplified material using dimethyl sulfoxide. Nucleic Acids Res. 17, 1266.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sarkar, G., Kapelner, S., and Sommer, S. S. (1990) Formamide can dramatically improve the specificity of PCR. Nucleic Acids Res. 18, 7465.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Schuchard, M., Sarkar, G., Ruesink, T., and Spelsberg, T. C. (1993) Two-step “hot” PCR amplification of GC-rich avian c-myc sequences. BioTechniques 14, 390–394.

    CAS  PubMed  Google Scholar 

  7. Hung, T., Mak, K., and Fong, K. (1990) A specificity enhancer for polymerase chain reaction. Nucleic Acids Res. 18, 4953.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Eckert, K. A. and Kunkel, T. A. (1991) DNA polymerase fidelity and the DNA polymerase chain reaction. PCR Meth. Applic. 1, 17–24.

    Article  CAS  Google Scholar 

  9. Kong, H. M., Kucera, R. B., and Jack W. E. (1993) Characterization of a DNA from the hyperthermophile Archaea thermococcus litoralis. J. Biol. Chem. 268, 1965–1975.

    CAS  PubMed  Google Scholar 

  10. Mattila, P., Korpela, J., Tenkanen, T., and Pitkanen, K. (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase-an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res. 19, 4967–4993.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lundberg, K. S., Shoemaker, D. D., Adams, M. W. W., Short, J. M., Sorge, J. A., and Mathur, E. J. (1991) High fidelity amplification using thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108, 1–6.

    Article  CAS  PubMed  Google Scholar 

  12. Breslauer, K. J., Frank, R., Blocker, H., and Marky, L. A. (1986) Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750.

    Article  CAS  PubMed  Google Scholar 

  13. Freier, S. M., Klerzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T., and Turner, D. H. (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83, 9373–9377.

    Article  CAS  PubMed  Google Scholar 

  14. Granier, B., Duez, C., Lepage, S., Englebert, S., Dusart, J., Dideberg, O., Van Beeumen, J., Frère, J.-M., and Ghuysen, J.-M. (1992) Primary and predicted secondary structures of the Actinomadura R39 extracellular DD-peptidase, a penicillin-binding protein (PBP) related to the Escherichia coli PBP4. Biochem J. 282, 781–788.

    CAS  PubMed  Google Scholar 

  15. Alberts, B. and Sternglanz, R. (1977) Recent excitement in the DNA replication problem. Nature 269, 655–661.

    Article  CAS  PubMed  Google Scholar 

  16. Bittner, M., Burke, R. L, and Alberts, B. M. (1979) Purification of the T4 gene 32 protein free from detectable deoxyribonuclease activities. J. Biol. Chem. 254, 9565–9572.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Moreau, A., Duez, C., Dusart, J. (1997). GC-Rich Template Amplification by Inverse PCR. In: White, B.A. (eds) PCR Cloning Protocols. Methods in Molecular Biology™, vol 67. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-483-6:47

Download citation

  • DOI: https://doi.org/10.1385/0-89603-483-6:47

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-483-9

  • Online ISBN: 978-1-59259-553-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics