Skip to main content

Physical Mapping by Pulsed-Field Gel Electrophoresis

  • Protocol
Gene Isolation and Mapping Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 68))

  • 735 Accesses

Abstract

During the past few years, there has been intense activity in physically mapping the genomes of a variety of organisms, including human, mouse, Drosophila, Caenorhabditis elegans, Arabidopsis thaliana, and yeast. The considerable advances made in physically mapping these genomes has demanded the development of a technique capable of filling the niche between conventional Southern blotting and such approaches as somatic cell genetics and fluorescence in situ hybridization (FISH). Pulsed-field gel electrophoresis (PFGE) fills this niche, and since its inception in 1983, has evolved into a robust and reliable technique. PFGE was first used for electrophoretically karyotyping yeasts and protozoa, but with the advent of commercially available rare cutter restriction enzymes, the technique was soon used for the long-range physical mapping of bacterial, yeast, and eukaryotic genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poustka, A., Pohl, T., Barlow, D. P., Zehetner, G., Craig, A., Michiels, F., Ehrich, E., Frischauf, A.-M., and Lehrach, H. (1986) Molecular approaches to mammalian genetics. Cold Spring Harbor Symp. on Quant. Biol. 51, 131–139.

    CAS  Google Scholar 

  2. Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.

    Article  PubMed  CAS  Google Scholar 

  3. Shibasaki, Y., Maule, J. C., Devon, R. S., Slorach, E. M., Gosden, J. R., Porteous, D. J., and Brookes, A. J. (1995) Catch-linker+PCR labeling a simple method to generate fluorescence in situ hybridization probes from yeast artificial chromosomes. PCR Methods Appl. 4, 209–211.

    PubMed  CAS  Google Scholar 

  4. Monaco, A. P. and Larin, Z. (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol. 12, 280–286.

    Article  PubMed  CAS  Google Scholar 

  5. Bickmore, W. A. and Bird, A. P. (1992) Use of restriction enzymes to detect and isolate genes from mammalian cells. Methods Enzymol. 216, 224–245.

    Article  PubMed  CAS  Google Scholar 

  6. Antequera, F., Boyes, J., and Bird, A. (1990) High levels of de novo methylation and altered chromatin structure at CpG islands. Cell 62, 503–514.

    Article  PubMed  CAS  Google Scholar 

  7. Maule, J. C. (1995) Colored microparticles for clear visualization of agarose beads and plugs. Trends Genet. 11, 127.

    Article  PubMed  CAS  Google Scholar 

  8. Jones, C. P., Janson, M., and Nordenskjold, M. (1989) Separation of yeast chromosomes in the megabase range suitable as size markers for pulsed-field gel electrophoresis. Technique 1, 90–95.

    CAS  Google Scholar 

  9. Wang, Y.-K. and Schwartz, D. C. (1993) Chopped inserts: a convenient alternative to agarose/DNA inserts or beads. Nucleic Acids Res. 21, 2528.

    Article  PubMed  CAS  Google Scholar 

  10. Orbach, M. J., Vollrath, D., Davis, W., and Yanofsky, C. (1988) An electrophoretic karyotype of Neurospora crassa. Mol. Cell Biol. 8, 1469–1473.

    PubMed  CAS  Google Scholar 

  11. Chu, G., Vollrath, D., and Davis, R. W. (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234, 1582–1585.

    Article  PubMed  CAS  Google Scholar 

  12. Clark, S. M., Lai, E., Birren, B. W., and Hood, L. (1988) A novel instrument for separating large DNA molecules with pulsed homogeneous electric fields. Science 241, 1203–1205.

    Article  PubMed  CAS  Google Scholar 

  13. Arker, W., Enquist, L., Hohn, B., Murray, N. E., and Murray, K. (1983) Experimental methods for use with lambda, in Lambda II (Hendrtx, R. W., ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 433–466.

    Google Scholar 

  14. Maule, J. C. and Green, D. K. (1990) Semiconductor-controlled contour-clamped homogeneous electric field apparatus. Anal. Biochem. 191, 390–395.

    Article  PubMed  CAS  Google Scholar 

  15. Porteous, D. J. and Maule, J. C. (1990) Casting multiple aliquots of agarose embedded cells for PFGE analysis. Trends Genet. 6, 346.

    Article  PubMed  CAS  Google Scholar 

  16. Guido, E. C. and Abhay, K. (1994) Simple method to reduce background on autoradiographs. BioTechniques 17, 294.

    PubMed  CAS  Google Scholar 

  17. Albertsen, H. M., Le Paslier, D., Abderrahim, H., Dausset, J., Cann, H., and Cohen, D. (1989) Improved control of partial DNA restriction enzyme digest in agarose using limiting concentrations of Mg++. Nucleic Acids Res. 17, 808.

    Article  PubMed  CAS  Google Scholar 

  18. Barlow, D. P. and Lehrach, H. (1990) Partial Not1 digests, generated by low enzyme concentration or the presence of ethidium in bromide, can be used to exten dthe range of pulsed-field gel mapping. Technique 2, 79–87.

    CAS  Google Scholar 

  19. Wilson, W. W. and Hoffman, R. M. (1990) Methylation of intact chromosomes by bacterial methylases in agarose plugs suitable for pulsed field electrophoresis. Anal. Biochem. 191, 370–375.

    Article  PubMed  CAS  Google Scholar 

  20. Topal, M. D., Thresher, R. J., Conrad, M., and Griffith, J. (1991) Nael endonuclease binding to pBR322 DNA induces looping. Biochemistry 30, 2006–2010.

    Article  PubMed  CAS  Google Scholar 

  21. Carle, G. F. and Olson, M. V. (1985) An electrophoretic karyotype for yeast. Proc. Natl. Acad. Sci. USA 82, 3756–3760.

    Article  PubMed  CAS  Google Scholar 

  22. Smith, C. L., Klco, S. R., and Cantor, C. R. (1988) Pulsed-field gel electrophoresis and the technology of large DNA molecules, in Genome. Analysis (Davies, K. E., ed.), IRL, Oxford, UK, pp. 41–71.

    Google Scholar 

  23. Mathew, M. K., Smith, C. L., and Cantor, C. R. (1988) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis: DNA size standards and the effect of agarose and temperature. Biochemistry 27, 9204–9210.

    Article  PubMed  CAS  Google Scholar 

  24. New England Biolabs Catalog (1995) Beverly, MA, p. 224.

    Google Scholar 

  25. White, H. W. (1992) Rapid separation of DNA molecules by agarose gel electrophoresis: use of a new agarose matrix and a survey of running buffer effects. BioTechniques 12, 574–579.

    PubMed  CAS  Google Scholar 

  26. Birren, B. W., Lai, E., Clark, S. M., Hood, L., and Simon, M. I. (1988) Optimized conditions for pulsed field gel electrophoretic separations of DNA. Nucleic Acids Res. 16, 7563–7582.

    Article  PubMed  CAS  Google Scholar 

  27. Birren, B. W., Hood, L., and Lai, E. (1989) Pulsed field gel electrophoresis studies of DNA migration made with the PACE electrophoresis system. Electrophoresis 10, 302–309.

    Article  PubMed  CAS  Google Scholar 

  28. Vollrath, D. and Davis, R. W. (1987) Resolution of DNA molecules greater than 5 megabases by contour-clamped homogeneous electric fields. Nucleic Acids Res. 15, 7865–7876.

    Article  PubMed  CAS  Google Scholar 

  29. Gunderson, K. and Chu, G. (1991) Pulsed-field electrophoresis of megabase-sized DNA. Mol. Cell Biol. 11, 3348–3354.

    PubMed  CAS  Google Scholar 

  30. Smith, D. R. (1990) Genomic long-range restriction mapping. Methods 1, 195–203.

    Article  CAS  Google Scholar 

  31. Reed, K. C. and Mann, D. A. (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13, 7207–7221.

    Article  PubMed  CAS  Google Scholar 

  32. Chikashige, Y., Kinoshita, N., Nakaseko, Y., Matsumoto, T., Murakami, S., Niwa, O., and Yanagida, M. (1989) Composite motifs and repeat symmetry in S. pombe centromeres. Cell 57, 739–751.

    Article  PubMed  CAS  Google Scholar 

  33. Stoye, J. P., Frankel, W. N., and Coffin, J. M. (1991) DNA hybridization in dried gels with fragmented probes: an improvement over blotting techniques. Technique 3, 123–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Maule, J. (1997). Physical Mapping by Pulsed-Field Gel Electrophoresis. In: Boultwood, J. (eds) Gene Isolation and Mapping Protocols. Methods in Molecular Biology™, vol 68. Humana Press. https://doi.org/10.1385/0-89603-482-8:93

Download citation

  • DOI: https://doi.org/10.1385/0-89603-482-8:93

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-482-2

  • Online ISBN: 978-1-59259-554-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics