Skip to main content

Selection of Transfected Cells

Magnetic Affinity Cell Sorting

  • Protocol
Recombinant Gene Expression Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 62))

  • 1611 Accesses

Abstract

DNA-mediated gene transfer techniques have revolutionalized molecular biology and are used extensively to study the function and regulation of eukaryotic genes in a variety of cell types. In general, expression of genes in mammalian cells can be studied by either stable transformation or by transient expression. Stable transformation of cells expressing the gene of interest can be achieved by cotransfection of the gene cloned in an appropriate expression vector under the control of a constitutive or inducible eukaryotic cellular or viral promoter and a vector that carries a dominant selectable marker such as Eco-gpt (1) or neo (2). Since the DNA-mediated gene transfer methods target only a fraction of cells for gene expression, the isolation of stably transfected cells with a selectable marker gives rise to a cell population expressing the gene of interest free of untransfected cells under conditions of drug selection. However, this method of selection is a long-term process and may have adverse effects on host cell functions such as cell growth or chromosomal rearrangements due to integration of a single or multiple copies of the selectable marker gene. Transient expression without a dominant selectable marker allows functional analysis of the transfected gene within 24–72 h after transfection but suffers from the drawback that the presence of a large fraction of untransfected cells in the milieu of cells expressing the gene of interest may give rise to problems of interference due to high background. Therefore, it was necessary to develop a method for isolation of transiently transfected cells free of untransfected cells within 24–72 h after transfection. With this overall goal in mind, the previously developed “panning” methodology was modified to isolate transiently transfected cells expressing the gene of interest together with a cotransfected cell surface marker gene using the magnetic affinity cell sorting (MACS) technology (3; for reviews, see refs 48). The MACS methodology allows the separation of cells expressing a surface protein away from those lacking the marker. The cell surface marker could be either introduced into cells by DNA-mediated gene transfer techniques or be an endogenously-expressing protein on the surface of selective cell type. In either case, the antibodies against the surface protein attached to a magnetic matrix are used to selectively “pull out” cells expressing that surface marker with the application of a magnetic field under appropriate experimental conditions whereas the cells lacking the marker remain unaffected. Expression of any cell surface protein for which a suitable antibody is available in a variety of cell types using DNA-mediated gene transfer methods allows this methodology to be useful in a wide range of biological applications (6,8,9). In the initial stages of development of this application of MACS methodology to transfected cells, readily assayable reporter gene product such as chloramphenicol acetyltransferase (CAT) was used as the gene of interest in conjunction with the cell surface markers such as the vesicular stomatitis virus glycoprotein (VSV-G) and the Tat subunit of interleukin 2 receptor (IL-2R) for transient expression in mammalian cells by DNA-mediated transfection techniques (3,10,11). Subsequently, it was shown that MACS could be successfully used to select a rare population of cells expressing the P-glycoprotein, the product of multiple drug resistant (mdr) gene (6,8,9) among human lymphomas as well as for selection of virus-infected cells expressing a surface protein (using dengue virus as an example) (6). The experimental conditions for MACS methodology have undergone some improvement over the original protocol published (3), and the modified procedure is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mulligan, R. C. and Berg, P. (1981) Selection for animal cells that express the Escherichia coli gene coding for xanthine-guanine phosphoribosyltransferase. Proc. Natl. Acad. Sci. USA 78, 2072–2076.

    Article  PubMed  CAS  Google Scholar 

  2. Southern, P. and Berg, P. (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under the control of the SV40 early region promoter. J. Mol. Appl. Genet. 1, 327–341.

    PubMed  CAS  Google Scholar 

  3. Padmanabhan, R., Corsico, C. D., Howard, T. H., Holter, W., Fordis, C. M., Willingham, M., and Howard, B. H. (1989) Purification of transiently transfected cells by magnetic affinity cell sorting. Analytical Biochem. 170, 341–348.

    Article  Google Scholar 

  4. Kemshead, J. T. and Ugelstad, J. (1985) Magnetic separation techniques their application to medicine. Mol. Cell. Biochem. 67, 11–18.

    PubMed  CAS  Google Scholar 

  5. Padmanabhan, R., Corsico, C., Holter, W., Howard, T., and Howard, B. H. (1989) Purification of transiently transfected cells by magnetic-affinity cell sorting. J. Immunogenetics 16, 91–102.

    Article  CAS  Google Scholar 

  6. Padmanabhan, R., Padmanabhan, R., Howard, T., Gottesman, M. M., and Howard, B. H. (1993) Magnetic affinity cell sorting to isolate transiently transfected cells, multidrug-resistant cells, somatic cell hybrids, and virally infected cells. Methods Enzymol. 218, 637–651.

    Article  PubMed  CAS  Google Scholar 

  7. Liberti, P. A. and Feely, B. P. (1991) Analytical-and process-scale cell separation with bioreceptor ferrofluids and high-gradient magnetic separation, in Cell Separation Science and Technology (Kompala, D. S. and Todd, P., eds.), American Chemical Society, Washington D. C., pp. 268–288.

    Chapter  Google Scholar 

  8. Padmanabhan, R. (1994) Magnetic Affinity Cell Sorting and its Biological Applications. Ph. D. Thesis submitted to University of Kansas.

    Google Scholar 

  9. Padmanabhan, R., Tsuruo, T., Kane, S., Willingham, M. C., Howard, B., Gottesman, M. M., and Pastan, I. (1991) Magnetic affinity cell sorting of human multidrug-resistant cells. J. Natl. Cancer Inst. 83, 565–569.

    Article  PubMed  CAS  Google Scholar 

  10. Riedel, H., Kondor-Koch, C., and Garoff, H. (1984) Cell surface expression of fusogenic vesicular stomatitis virus G protein from cloned cDNA. EMBO, J. 3, 1477–1483.

    CAS  Google Scholar 

  11. Salahuddin, S. Z., Markham, P. D., Wong-Stahl, F., Franchini, G., Kalyanaraman, V. S., and Gallo, R. C. (1983) Restricted expression of human T cell leukemia-lymphoma virus (HTLV) in transformed human umbilical cord blood lymphocytes. Virology 129, 51–64.

    Article  PubMed  CAS  Google Scholar 

  12. Gorman, C. M., Moffat, L., and Howard, B. H. (1982) Recombinant genomes which express chloramphenicol acetyl transferase in mammalian cells. Mol. Cell. Biol. 2, 1044–1051.

    PubMed  CAS  Google Scholar 

  13. de wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., and Subramani, S. (1987) Firefly luciferase gene structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.

    PubMed  Google Scholar 

  14. Hall, C. V., Jacob, P. E., Ringold, G. M. and Lee, F. (1983) Expression and regulation of E. coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2, 101–109.

    PubMed  CAS  Google Scholar 

  15. Giordano, T., Howard, T. H., Coleman, J., Sakamoto, K., and Howard, B. H. (1991) Isolation of a population of transiently transfected quiescent and senescent cells by magnetic affinity cell sorting. Exp. Cell. Res. 192, 193–197.

    Article  PubMed  CAS  Google Scholar 

  16. Waldmann, T. A., Goldman, C. K., Robb, R. J., Depper, J. M., Leonard, W. J., Sharrow, S. O., Bongiovanni, K. F., Korsmeyer, S. J., and Greene, W. C. 1984 Expression of interleukin-2 receptors on activated human B cells. J. Exp. Med. 160, 1450–1466.

    Google Scholar 

  17. Kemshead, J. T., Heath, L., Gibson, F. M., Katz, F., Richmond, F., Treleaven, J., and Ugelstad, J. (1986) Magnetic microspheres and monoclonal antibodies for the depletion of neuroblastoma cells from bone marrow: experiences, improvements, and observations. Br. J. Cancer 54, 771–778.

    Article  PubMed  CAS  Google Scholar 

  18. Gorman, C. M., Padmanabhan, R., and Howard, B. H. (1983) High efficiency DNA-mediated transformation of primate cells. Science 221, 551–553.

    Article  PubMed  CAS  Google Scholar 

  19. Hamada, H. and Tsuruo, T. (1986) Functional role for the 170 to 180 KD glyco-protein specific to drug resistant tumor cells as revealed by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 83, 7785–7789.

    Article  PubMed  CAS  Google Scholar 

  20. Gottesman, M. M. and Pastan, I. (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 62, 385–427.

    Article  PubMed  CAS  Google Scholar 

  21. Germann, U. A., Pastan, I. and Gottesman, M. M. (1993) P-glycoproteins mediators of multidrug resistance. Semin. Cell. Biol. 4, 63–76.

    Article  PubMed  CAS  Google Scholar 

  22. Fojo, A. T., Ueda, K., Slamon, D. J., Poplack, D. G., Gottesman, M. M., and Pastan, I. (1987) Expression of a multidrug resistant gene in human tumors and tissues. Proc. Natl. Acad. Sci. USA 84, 265–269.

    Article  PubMed  CAS  Google Scholar 

  23. Goldstein, L. J., Fojo, A. T., Ueda, K., Crist, W., Green, A., Brodeur, G., Pastan, I., and Gottesman, M. M. (1990) Expression of the multidrug resistance, MDR1, gene in neuroblastomas. J. Clin. Oncol. 8, 128–136.

    PubMed  CAS  Google Scholar 

  24. Thiebaut, F., Tsuruo, T., Hamada, H., Gottesman, M. M., Pastan, I., and Willingham, M. C. (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84, 7735–7738.

    Article  PubMed  CAS  Google Scholar 

  25. Szybalska, E. H. and Szybalski, W. (1962) Genetics of human cell lines: IV. DNA mediated heritable transformation of a biochemical trait. Proc. Natl. Acad. Sci. USA 48, 2026.

    Article  PubMed  CAS  Google Scholar 

  26. Littlefield, J. W. (1964) Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science 145, 709.

    Article  PubMed  CAS  Google Scholar 

  27. Hancock, J. P. and Kemshead, J. T. (1993) A rapid and highly selective approach to cell separations using an immunomagnetic colloid. J. Immunol. Meth. 164, 51–60.

    Article  CAS  Google Scholar 

  28. Huggett, A. C., Ellis, P. A., Ford, C. P., Hampton, L. L., Rimoldi, D., and Thorgeirsson, S. S. (1991) Development of resistance to the growth inhibitory effects of transforming growth factor β1 during the spontaneous tranformation of rat liver epithelial cells. Cancer Res. 51, 5929–5936.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Padmanabhan, R., Thorgeirsson, S.S., Padmanabhan, R. (1997). Selection of Transfected Cells. In: Tuan, R.S. (eds) Recombinant Gene Expression Protocols. Methods in Molecular Biology, vol 62. Humana Press. https://doi.org/10.1385/0-89603-480-1:343

Download citation

  • DOI: https://doi.org/10.1385/0-89603-480-1:343

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-480-8

  • Online ISBN: 978-1-59259-548-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics