Isolation of Genomic DNA from Mycobacteria

  • John T. Belisle
  • Michael G. Sonnenberg
Part of the Methods in Molecular Biology™ book series (MIMB, volume 101)

Abstract

The Mycobacterium genus is comprised of over 30 mdivldual species with a large majority being saphrophytes. However, research on these bacteria has focused primarily on the pathogens Mycobacterium bow, Mycobacterium tuberculosis, and Mycobacterium leprae, and opportunistic pathogens such as the Mycobacterium avium complex and Mycobacterium kansasil. These medically important Mycobacterium spp. have been studied extensively in terms of antigenicity (1,2), pathogenicity (3,4), and physiology (5,6), and with the development of genetic transformation techniques for mycobacteria (7), a new era of dedicated efforts to define these organisms at the genomic level was established Over the past decade, such efforts have been underscored by the isolation of mycobacterial genes encoding immunodommant proteins (2,8, 9, 10), virulence factors (11, 12, 13) and the biosynthesis of secondary products (14,15); as well as the establishment of genome sequencing projects for M leprae and M. tuberculosis (16,17). Essential to these accomplishments was the development of efficient means to isolate high quality mycobacterial genomic DNA.

References

  1. 1.
    Vordermeier, H M (1995) T-cell recognition of mycobacterial antigens Eur Resp J 20, 657s–667sGoogle Scholar
  2. 2.
    Young, D B., Kaufmann, S H, Hermans, P. W., and Thole, J E (1992) Mycobacterial protein antigens: a compilation. Mol Microbiol 6, 133–145PubMedCrossRefGoogle Scholar
  3. 3.
    Rook, G A W and Bloom, B R (1994) Mechanisms of pathogenesis in tuberculoses, in Tuberculosis Pathogenesis, Protection and Control (Bloom, B R, ed), ASM, Washington, D C., pp. 485–502.Google Scholar
  4. 4.
    Shinnick, T M, King, C H, and Quinn, F. D (1995) Molecular biology, virulence, and pathogemclty of mycobacteria Am J Med Sci 309, 92–98PubMedCrossRefGoogle Scholar
  5. 5.
    Brennan, P. J and Nikaido, H (1995) The envelope of mycobacteria Annu Rev Biochem. 64, 29–63PubMedCrossRefGoogle Scholar
  6. 6.
    Andersen, A. B and Brennan, P J (1994) Proteins and antigens of Mycobacterium tuberculosis, in Tuberculosis Pathogenesis, Protection and Control (Bloom, B R, ed), ASM, Washington, D.C, pp. 307–332.Google Scholar
  7. 7.
    Jacobs, W. R., Jr, Kalpana, G. V., Cirillo, J D., Pascopella, L., Snapper, S. B., Udani, R. A, Jones, W, Barletta, R. G., and Bloom, B R (1991) Genetic systems for mycobacteria Methods Enzymol 204, 537–555.PubMedCrossRefGoogle Scholar
  8. 8.
    Laqueyrerie, A, Mllitzer, P, Romam, F., Eiglmeier, K., Cole, S., and Marchal, G. (1995) Cloning, sequencing, and expression of the apa gene coding for the Mycobacterium tuberculosis 45/47-kilodalton secreted antigen complex. Infect lmmun 63, 4003–4010.Google Scholar
  9. 9.
    Roche, P. W., Winter, N., Triccas, J. A., Feng, C G, and Britton, W J (1996) Expression of Mycobacterium tuberculosis MPT64 in recombinant Mycobacterium smegmatis: punficatlon, immunogenicity and application to skin tests for tuberculosis Clin Exper Immunol 103, 226–232CrossRefGoogle Scholar
  10. 10.
    Sorensen, A L, Nagai, S., Houen, G, Andersen, P, and Andersen, A. B. (1995) Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis Infect Immun 63, 1710–1717Google Scholar
  11. 11.
    Collins, D. M., Kawakami, R P, de Lisle, G W., Pascopella, L., Bloom, B. R, and Jacobs, Jr, W R (1995) Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex Proc Natl Acad Sci USA 92, 8036–8040PubMedCrossRefGoogle Scholar
  12. 12.
    Pascopella, L., Collins, F M, Martin, J M., Lee, M. H., Hatfull, G F, Stover, C K, Bloom, B. R, and Jacobs, Jr., W R (1994) Use of In vlvo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun 62, 1313–1319PubMedGoogle Scholar
  13. 13.
    Sherman, D R, Sabo, P J, Hickey, M J., Arain, T M., Mahairas, G. G., Yuan, Y., Barry, III, C E, and Stover, C K (1995) Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria Proc Natl Acad Sci USA 92, 6625–6629.PubMedCrossRefGoogle Scholar
  14. 14.
    Behisle, J T, Pascopella, L., Inamine, J M, Brennan, P. J., and Jacobs, Jr, W R (1991) Isolation and expression of a gene cluster responsible for biosynthesis of the glycopeptidolipid antigens of Mycobacterium avium. J Bacteriol 173, 6991–6997Google Scholar
  15. 15.
    Yuan, Y., Lee, R. E, Besra, G S., Belisle, J T, and Barry, III, C E (1995) Identification of a gene involved in the biosynthesis of clycopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci. USA 92, 6630–6634PubMedCrossRefGoogle Scholar
  16. 16.
    Bergh, S. and Cole, S T (1994) MycDB an integrated mycobacterial database Mol Microbiol 12, 517–534PubMedCrossRefGoogle Scholar
  17. 17.
    Cole, S. T (1994) The genome of Mycobacterium leprae Int J Lepr 62, 122–125.Google Scholar
  18. 18.
    Sambrook, J., Fritsch, E. F, and Maniatis, T. (1989) Molecular Cloning A Laboratory Manual, 2nd ed Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  19. 19.
    Caparon, M G and Scott, J. R. (1991) Genetic manipulation of pathogenic streptococci Methods Enzymol 204, 556–586PubMedCrossRefGoogle Scholar
  20. 20.
    Hoch, J A. (1991) Genetic analysis in bacillus subtilis Methods Enzymol 204, 305–320PubMedCrossRefGoogle Scholar
  21. 21.
    Murray, A., Winter, N, Lagranderie, M., Hill, D F., Rauzier, J, Timm, J., Leclerc, C., Moriarty, K M, Gheorghiu, M, and Gicquel, B. (1992) Expression of Escherichia coli β-galactosidase in Mycobacterium bovis BCG using an expression system isolated from Mycobacterium paratuberculosis which induced humoral and cellular immune responses Mol Microbiol 6, 3331–3342PubMedCrossRefGoogle Scholar
  22. 22.
    Barrera, L F., Skamene, E., and Radzioch, D. (1993) Assessment of mycobacterial infection and multiplication in macrophages by polymerase chain reaction J Immunol Methods 157, 91–99.PubMedCrossRefGoogle Scholar
  23. 23.
    Hurley, S S, Splitter, G A., and Welch, R A. (1987) Rapid lysis technique for mycobacterial species J Clin Microbiol 25, 2227–2229PubMedGoogle Scholar
  24. 24.
    Yandell, P M and McCarthy, C (1980) Isolation of deoxyribonucleic acid from Mycobacterium avium by rapid nitrogen decompression Infect Immun 27, 368–375.PubMedGoogle Scholar
  25. 25.
    Yoshimura, H. H, Graham, D. Y, Estes, M. K., and Merkal, R S (1987) Investigation of association of mycobacteria with inflammatory bowel disease by nucleic acid hybridization J Clin Microbiol 25(l), 45–51.PubMedGoogle Scholar
  26. 26.
    Imai, T, Ohta, K, Kigawa, H, Kanoh, H., Taniguchi, T, and Tobari, J. (1994) Preparation of high-molecular weight DNA: application to mycobacterial cells. Anal Biochem 222, 479–482.PubMedCrossRefGoogle Scholar
  27. 27.
    Patel, R., Kvach, J T, and Mounts, P (1986) Isolation and restriction endonuclease analysis of mycobacterial DNA J Gen Microbiol 132, 541–551PubMedGoogle Scholar
  28. 28.
    Whipple, D L, LeFebvre, R B, Andrews, Jr, R. E, and Thiermann, A B (1987) Isolation and analysis of restrictron endonuclease digestive patterns of chromosomal DNA from Mycobacterium paratuberculosis and other Mycobacterium species J Clin Microbiol 25, 1511–1515.PubMedGoogle Scholar
  29. 29.
    Baess, I. (1974) Isolation and purrfication of deoxribonucleic acid from mycobacteria. Acta Path Microbiol Scand Sect B 82, 780–784.Google Scholar
  30. 30.
    Hurley, S. S., Splitter, G A, and Welch, R A (1988) Deoxyribonucleic acid relatedness of Mycobacterium paratuberculosis to other members of the family Mycobacteriaceae Intl J Sys Bacteriol 38, 143–146CrossRefGoogle Scholar
  31. 31.
    Ansubel, F M, Brent, R., Kingston, R E, Moore, D. D., Seidman, J G., Smith, J. A., and Struhl, K. (1990) Current Protocols in Molecular Biology John Wiley & Sons, NY.Google Scholar
  32. 32.
    Takayama, K., Schnoes, H. K., Armstrong, E L, and Boyle, W. R (1975) Site of inhibitory action of isoniazid in the synthesis of mycolic acids in Mycobacterium smegmatis. J Lipid Res 16 308–317PubMedGoogle Scholar
  33. 33.
    Collins, F. M., Wayne, L G, and Montalbine, V. (1974) The effect of cultural conditions on the distribution of Mycobacterium tuberculosis in the spleens and lungs of specific pathogen free mice Am Rev Respir Dis 110, 147–156PubMedGoogle Scholar
  34. 34.
    Youmans, G P and Karlson, A.G. (1974) Streptomycin sensitivity of tubercle bacilli: studies on recently isolated tubercle bacilli and the development of resistance to streptomycin in vivo Am Rev. Tuberc 55, 529Google Scholar
  35. 35.
    Sommers, H. M., and Good, R C (1985) Mycobacterium, in Manual of Clinical Microbiology(Balows, A., Hausler, Jr., W. J., and Shadomy, H J., eds ), American Society for Microbiology, Washington, D.C, pp 217Google Scholar
  36. 36.
    Dixon, J. M. S. and Cuthbert, E. H. (1967) Isolation of tubercle bacilli from uncentrifuged sputum on pyruvic acid medium. Am. Rev Resp Dis 96, 119–122PubMedGoogle Scholar
  37. 37.
    Biosafety in Microbiological and Biomedical Laboratories (1993) 3rd ed, U S Department of Health and Human Services, Public Health Service Centers for Disease Control and Prevention and National Institutes of Health HHS Publication No. (CDC) 93-8395, pp. 93–96Google Scholar
  38. 38.
    Sedlaczek, L., Gorminski, B. M., and Lisowska, K. (1994) Effect of inhibitors of cell envelope synthesis on (-sitosterol side chain degradation by Mycobacterium sp NRRLMB3683 J Basic Microbiol 34(6), 387–399PubMedCrossRefGoogle Scholar
  39. 39.
    Shepard, C C and McRae, D. H. (1968) A method for counting acid-fast bacteria. Int J Lepr 36, 78–82Google Scholar
  40. 40.
    Baess, I (1984) Determination and re-examination of genome sizes and base ratios on deoxyribonucleic acid from mycobacteria Acta Path Microbiol Immunol Stand Sect B. 92, 209–211Google Scholar
  41. 41.
    Imaeda, T., Kirchheimer, W. F., and Barksdale, L. (1982) DNA isolated from Mycobacterium leprae. genome size, base ratio, and homology with other related bacteria as determined by optical DNA-DNA re-association J Bacteriol 150, 414–417.PubMedGoogle Scholar
  42. 42.
    McFadden, J. J., Butcher, P. D., Chiodini, R. J., and Hermon-Taylor, J. (1987) Determination of genome size and DNA homology between an unclassified Mycobacterium species isolated from patients with Crohn′s Disease and other mycobacteria. J. Gen. Microbiol. 133, 211–214.PubMedGoogle Scholar
  43. 43.
    Mizuguchi, Y and Tokunaga, T. (1970) Method for isolation of deoxyribonucleic acid from mycobacteria. J Bacteriol 104, 1020–1021PubMedGoogle Scholar
  44. 44.
    Shoemaker, S A., Fisher, J H, Jones, Jr, W. D., and Scoggin, C H. (1986) Restriction fragment analysis of chromosomal DNA defines different strains of Mycobacterium tuberculosis. Am Rev Respir Dis 134, 210–213.PubMedGoogle Scholar
  45. 45.
    McFadden, J. J, Butcher, P. D., Chiodini, R., and Hermon-Taylor, J. (1987) Crohn′s disease-isolated mycobacteria are identical to Mycobacterium paratuberculosis, as determined by DNA probes that distinguish between Mycobacterial species. J. Clin Microbiol 25, 796–801.PubMedGoogle Scholar
  46. 46.
    Gongalez-y-Merchand, J. A., Estrada-Garcia, I., Colston, M J, and Cox, R A (1996) A novel method for the isolation of mycobacterial DNA. FEMS Microbial. Lett. 135, 71–77CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1998

Authors and Affiliations

  • John T. Belisle
    • 1
  • Michael G. Sonnenberg
    • 2
  1. 1.Department of Microbiology and ImmunologyUniversity of LeicesterLeicesterUK
  2. 2.Department of MicrobiologyColorado State UniversityFort Collins

Personalised recommendations