Skip to main content

Regulation of Neuronal PP1 and PP2A During Development

  • Protocol
Protein Phosphatase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 93))

Abstract

A variety of studies in recent years have indicated that modulation of protein phosphatases perturbs brain function. For example, a mutation in PP1 is associated with defective habituation and associative learning in drosophila (1), and the activity of PPl and/or PP2A is essential for induction and maintenance of long term depression (LTD) in hippocampal neurons (2). Recent studies link reduced PP2A activity with hyperphosphorylation of Tau in Alzheimer’s disease (3). A number of studies using inhibitors of PP1 and PP2A have also implicated a role for PP1 and PP2A in regulating neurotransmitter release. Studies from this laboratory suggest a role for these enzymes in priming or modulation rather than triggering of release (4. At the molecular level, regulation of PP1 and PP2A has been implicated in modulating the activity of several receptors and ion channels. For example, inhibition with okadaic acid leads to stimulation of non-NMDA-type glutamate receptors (5) and activation of NMDA-type receptors induces specific dephosphorylation and inactivation of DARPP-32, a neuronal homolog of PPl-inhibitor 1 (6). Given the ubiquitous distribution and substrate overlap of the catalytic subunits of PP1 and PP2A, both between cell types and within cells, the current challenge is to delineate and localize the individual mechanisms regulating PP1 and PP2A in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asztalos, Z., von Wergerer, J., Wustman, G., Dombradi, V., Gausz, J., Spatz, H-C, and Friedrich, P. (1993) Protein phosphatase 1-deficient mutant drosophila is affected in habituation and associative learning. J Neurosci 3, 924–930.

    Google Scholar 

  2. Mulkey, R. M., Herron, C E, and Malenka, R. C (1993) An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051–1055.

    Article  PubMed  CAS  Google Scholar 

  3. Trojanowski, J. Q. and Lee, V. M. (1995) Phosphorylation of paired helical filament tau in Alzheimer’s disease neurofibrillary lesions: focusing on phosphatases. FASEB J 9(15), 1570–1576.

    PubMed  CAS  Google Scholar 

  4. Sim, A. T. R, Lloyd, H G. E, Jarvie, P., Morrison, M, Rostas, J. A. P., and Dunkley, P. R. (1993) Synaptosomal amino acid release effect of inhibiting protein phosphatases with okadaic acid. Neurosci Lett. 160, 181–184.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, L-Y., Salter, M W., and Macdonald, J. F (1991) Regulation of kainate receptors by cAMP-dependent protein kinase and phosphatases. Science 253, 1132–1135.

    Article  PubMed  CAS  Google Scholar 

  6. Halpain, S., Girault, J-A., and Greengard, P. (1990) NMDA receptor activation induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343, 369–372

    Article  PubMed  CAS  Google Scholar 

  7. Sim, A. T. R., Dunkley, P. R., Jarvie, P. E., and Rostas, J A. P. (1991) Modulation of synaptosomal protein phosphorylation/dephosphorylation by calcium is antagonised by inhibition of protein phosphatses with okadaic acid. Neurosci Lett 126, 203–206

    Article  PubMed  CAS  Google Scholar 

  8. Sim, A T. R, Ratchffe, E., Mumby, M. C, Villa-Moruzzi, E., and Rostas, J. A. P (1994) Differential activities of protein phosphatse types 1 and 2 A in cytosolic and particulate fractions from rat forebrain. J. Neurochem 62, 1552–1559

    Article  PubMed  CAS  Google Scholar 

  9. Rostas, J A. P (1991) Molecular mechanisms of neuronal maturation: a model for synaptic plasticity, in Neural and Behavioural Plasticity (Andrew, R J., ed) Oxford University Press, pp. 177–211

    Google Scholar 

  10. Sim, A. T. R., Collins, E., Mudge, L-M., and Rostas, J. A. P. (Manuscript in preparation.)

    Google Scholar 

  11. Agostmos, P., Goris, J, Pinna, L A., Marchion, F, Pench, J. W, Meyer, H E., and Merlevede, W (1990) Synthetic peptides as model substrates for the study of the specificity of the polycation-stimulated protein phosphatases. Eur J Biochem 189, 235–241.

    Article  Google Scholar 

  12. Dunkley, P R., Jarvie, P. E, and Sim, A T R (1996) Protein phosphorylation and dephosphorylation in the nervous system, in Neurochemistry, A Practical Approach (Turner, A J. and Bacehlard, H., eds) IRL

    Google Scholar 

  13. Ishihara, H, Martin, B L, Brautigan, D. L, Karaki, H, Ozaki, H, Kato, Y., Fusetam, N, Watabe, S., Hashimoto, K., Uemura, D, and Hartshorne, D. J. (1989) Calyculm A and Okadaic acid: inhibitors of protein phosphatase activity Biochem Biophys Res Comm. 159, 871–877

    Article  PubMed  CAS  Google Scholar 

  14. Dunkley, P. R and Robinson, P. J (1986) Depolansation-dependent protein phosphorylation in synaptosomes-mechanisms and signficance Prog Brain Res 69, 273–293.

    Article  PubMed  CAS  Google Scholar 

  15. Bollen, M. and Stalmans, W. (1992) The structure, role and regulation of type 1 protein phosphatases Crit Rev Biochem. Molec Biol 27, 227–281.

    Article  CAS  Google Scholar 

  16. Favre, B., Zolnierowicz, S, Turowski, P., and Hemmings, B. A. (1994) The catalytic subunit of protein phosphatase 2A is carboxylmethylated in vivo. J. Biol Chem 269, 16311–16317

    PubMed  CAS  Google Scholar 

  17. Moorhead, G, MacKmtosh, R. W., Morrice, N., Gallagher, T, and MacKintosh, C (1994) Purification of type 1 proem (serine/threonine) phosphatases by microcystin-sepharose affinity chromatography FEBS Lett 356, 46–50

    Article  PubMed  CAS  Google Scholar 

  18. Bollen, M. and Stalmans, W (1988) Fluorine compounds inhibit the conversion of active type-1 protein phosphatases into the ATPMg-dependent form. Biochem J 255, 327–333

    PubMed  CAS  Google Scholar 

  19. Pinna, L. A. and Donella-Deana, A. ( 1994) Phosphorylated synthetic peptides as tools for studying protein phosphatases. Biochim Biophys. Acta 1222, 415–431.

    Article  PubMed  CAS  Google Scholar 

  20. Dunkley, P. R., Jarvie, P. E., Heath, J. W., Kidd, G. J., and Rostas, J A. P (1986) A rapid method for the isolation of synaptosomes on percoll gradients Brain Res. 372, 115–129.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Collins, E., Sim, A.T.R. (1998). Regulation of Neuronal PP1 and PP2A During Development. In: Ludlow, J.W. (eds) Protein Phosphatase Protocols. Methods in Molecular Biology™, vol 93. Humana Press. https://doi.org/10.1385/0-89603-468-2:79

Download citation

  • DOI: https://doi.org/10.1385/0-89603-468-2:79

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-468-6

  • Online ISBN: 978-1-59259-267-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics