Skip to main content

The Search for the Biological Function of Novel Yeast Ser/Thr Phosphatases

  • Protocol
  • 532 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 93))

Abstract

The genome of the yeast S. cerevisiae contains a fairly large number of genes encoding Ser/Thr protein phosphatases. Among these genes can be found the homologs of the classical phosphatases described in mammalian tissues in the early 1980s. For instance, the catalytic subunit of PP1 is encoded by the gene GLC7, whereas two forms of PP2A are encoded by genes PPH21 and PPH22. As it happens in other organisms, the yeast catalytic subunits of PP1, PP2A, and PP2B (calcineurin) are quite related in sequence. In addition to these phosphatases, yeast cells contain other phosphatase genes that, while related to PP1 or PP2A in their primary structure, are functionally different. The main features of these genes (113) are described in Table 1.

Table 1 Structure and Known Function of Novel Yeast Ser/Thr Protein Phosphatases

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sutton, A, Immanuel, D, and Arndt, K T (1991) The SIT4 protein phosphatase functions in late G1 for progression into S phase. Mol Cell Biol 11, 2133–2148.

    PubMed  CAS  Google Scholar 

  2. Mann, D. J., Dombradi, V., and Cohen, P. T. W (1993) Drosophila protein phosphatase V functionally complements a SIT4 mutant in Saccharomyces cerevisiae and its amino-terminal region can confer this complementation to a heterologous phosphatase. EMBO J 12, 4833–4842

    PubMed  CAS  Google Scholar 

  3. Ronne, H, Carlberg, M., Hu, G Z, and Nehlin, J O. (1991) Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis Mol Cell Biol 11, 4876–4884

    PubMed  CAS  Google Scholar 

  4. Hoffmann, R., Jung, S, Ehrmann, M., and Hofer H. W (1994) The Saccharomyces cerevisiae gene PPH3 encodes a protein phosphatase with properties different from PPX, PP1 and PP2A Yeast 10, 567–578.

    CAS  Google Scholar 

  5. Posas, F., Clotet, J, Muns, M T, Corominas, J., Casamayor, A, and Ariño, J (1993) The gene PPG encodes a novel yeast protein phosphatase involved in glycogen accumulation. J. Biol. Chem 268, 1349–1354.

    PubMed  CAS  Google Scholar 

  6. Posas, F., Casamayor, A, Morral, N., and Ariño, J. (1992) Molecular cloning and analysis of a yeast protein phosphatase with an unusual amino-terminal region J Biol Chem 267, 11,734–11,740.

    PubMed  CAS  Google Scholar 

  7. Posas, F., Casamayor, A., and Ariño, J. (1993) The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells FEBS Lett 318, 282–286.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, K. S., Hines, L K., and Levin, D. E. (1993) A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Mol Cell. Biol 13, 5843–5853

    PubMed  CAS  Google Scholar 

  9. Hughes, V., Muller A., Stark, M. J., and Cohen, P T (1993) Both isoforms of protein phosphatase Z are essential for the maintenance of cell size and integnty in Saccharomyces cerevisiae in response to osmotic stress. Eur J Biochem 216, 269–279

    Article  PubMed  CAS  Google Scholar 

  10. Posas, F., Camps, M., and Ariño, J. (1995) The PPZ protein phosphatases are important determinants of salt tolerance in yeast cells J Biol Chem 270, 13,036–13,041.

    Article  PubMed  CAS  Google Scholar 

  11. Chen, M. X., Chen, Y. H., and Cohen, P T. (1993) PPQ, a novel protein phosphatase containing a Ser + Asn-rich amino-terminal domain, is involved in the regulation of protein synthesis. Eur J. Biochem 218, 689–699

    Article  PubMed  CAS  Google Scholar 

  12. Vincent, A., Newnam, G., and Liebman, S. W. (1994) The yeast translational allosuppressor, SAL6 a new member of the PP1-like phosphatase family with a long serine-rich N-terminal extension. Genetics 138, 597–608.

    PubMed  CAS  Google Scholar 

  13. Chen, M. X., McPartlin, A. E., Brown, L., Chen, Y. H., Barker, H M, and Cohen, P. T. (1994) A novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus EMBO J 13, 4278–4290.

    PubMed  CAS  Google Scholar 

  14. Thevelein, J. M. (1994) Signal transduction in yeast. Yeast 10, 1753–1790.

    Article  PubMed  CAS  Google Scholar 

  15. Peng, Z-Y., Trumbly, R. J., and Reimann, E. M (1990) Purification and characterization of a glycogen synthase from a deficient-deficient strain of Saccharomyces cerevisiae J Biol Chem 265, 13,871–13,877

    PubMed  CAS  Google Scholar 

  16. Clotet, J, Posas, F., Casamayor, A., Schaaf-Gerstenschlager, I., and Ariño, J. (1991) The gene DIS2S1 is essential in Saccharomyces cerevisiae and is involved in glycogen phosphorylase activation. Curr Genet 19, 339–342.

    Article  PubMed  CAS  Google Scholar 

  17. Clotet, J, Posas, F., Hu, G-Z., Ronne, H., and Ariño, J. (1995) Role of protein phosphatase 2A in the control of glycogen metabolism in yeast. Eur J Biochem 229, 207–214.

    Article  PubMed  CAS  Google Scholar 

  18. Nakamura, T., Liu, Y., Hirata, D., Namba, H., Harada, S., Hirokawa, T, and Miyakawa, T (1993) Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high stress salt conditions EMBO J 12, 4063–4071

    PubMed  CAS  Google Scholar 

  19. Mendoza, I., Rubio, F, Rodriguez-Navarro, A, and Pardo, J M (1994) The protein phosphatase calcineurin is essential for salt tolerance in Saccharomyces cerevisiae. J. Biol Chem 269, 8792–8796

    PubMed  CAS  Google Scholar 

  20. Gómez-Foix, A. M., Coats, W. S., Baqué, S., Tausif, A, Gerard, R. D., and Newgard, C. B (1992) Adenovirus-mediated transfer of the muscle glycogen phosphorylase gene into hepatocytes confers altered regulation of glycogen metabolism J Biol Chem. 267, 25,129–25,134

    PubMed  Google Scholar 

  21. Kepler, D and Dekler, K. (1984) Glycogen, in Methods of Enzymatic Analysis, 3rd ed., vol 6, (Bergmeyer, H. U, ed.), Chemie, Verlag, pp 11–18

    Google Scholar 

  22. Fernández-Bañares, I., Clotet, J., Ariño, J., and Guinovart, J. J. (1991) Glycogen hyperaccumulation in Saccharomyces cerevisiae ras2 mutant, a biochemical study. FEBS Lett 290, 38–42.

    Article  PubMed  Google Scholar 

  23. Kunts, A, Draeger, B., and Ziegenhorn, J (1984) d-Glucose UV methods with hexokinase and glucose GP dehydrogenase, in Methods of Enzymatic Analysis, 3rd. ed., vol. 6, (Bergmeyer, H. U., ed.), Chemie, Verlag, pp. 163–172.

    Google Scholar 

  24. Kunts, A., Draeger, B., and Ziegenhorn, J. (1984) UV-method with glucose dehydrogenase, in Methods of Enzymatic Analysis, 3rd. ed., vol. 6, (Bergmeyer, H. U., ed.), Chemie, Verlag, pp. 178–185.

    Google Scholar 

  25. Cabib, E. And Duran, A (1975) Simple and sensitive procedure for screening yeast mutants that lyse at nonpermisive temperatures J Bacteriol. 124, 1604–1606.

    PubMed  CAS  Google Scholar 

  26. Watanabe, Y., Irie, K., and Matsumoto, K. (1995) Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpkl (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 15, 5740–5749.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Ariño, J., Posas, F., Clotet, J. (1998). The Search for the Biological Function of Novel Yeast Ser/Thr Phosphatases. In: Ludlow, J.W. (eds) Protein Phosphatase Protocols. Methods in Molecular Biology™, vol 93. Humana Press. https://doi.org/10.1385/0-89603-468-2:305

Download citation

  • DOI: https://doi.org/10.1385/0-89603-468-2:305

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-468-6

  • Online ISBN: 978-1-59259-267-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics