Skip to main content

p53 Induction Is a Marker of Neuronal Apoptosis in the Central Nervous System

  • Protocol

Part of the book series: Neuromethods ((NM,volume 29))

Abstract

Apoptosis is an active process of selective cell death that occurs during development and has been implicated in the pathogenesis of a variety of human diseases (Thompson, 1995). Apoptosis can be distinguished from the other major form of cell death, necrosis, on the basis of both morphological and biochemical features; these include chromatin condensation with nuclear pyknosis, and cytoplasmic shrinkage (Thompson, 1995). One prominent hallmark of apoptosis is a characteristic pattern of DNA cleavage into oligonucleosome-sized fragments that, under most circumstances, can be visualized by agarose gel electrophoresis. However, when relatively few apoptotic cells are present, fragmented DNA can be labeled in situ by more sensitive techniques. Using this approach, apoptotic cell death has been documented in the rodent central nervous system (CNS) following cerebral ischemia (Heron et al., 1993; MacManus et al, 1994), status epilepticus (Filipowski et al., 1994; Pollard et al., 1994; Sakhi et al., 1994) and adrenalectomy (Schreiber et al., 1994). Similar methods have been used to demonstrate apoptotic cells in the brain of patients with Alzheimer’s (Su et al., 1994; Lassamn et al., 1995) and Huntington’s diseases (Portera-Cailliau et al., 1995).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Cohen J. J. (1993) Apoptosis Immunol Today 14, 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Colotta F, Polentarutti N., Sironi M., and Mantovani A (1992) Expression and involvement of c-fos and c-jun protooncogenes in programmed cell death induced by growth factor deprivation in lymphoid cell lines J Biol Chem 267, 18,278–18,283.

    PubMed  CAS  Google Scholar 

  • Crumrine R C, Thomas A L, and Morgan P. F. (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice J. Cereb Blood Flow Metab 14, 887–891

    PubMed  CAS  Google Scholar 

  • Donehower L A., Harvey M, Slagle B. L., McArthur M. J, Montgomery C. A. Jr, Butel J. S., and Bradley A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow M, Beilharz E, Sirimanne E., Lawlor P, Williams C, Bravo R., and Gluckman P (1994) Immediate-early gene protein expression in neurons undergoing delayed death but not necrosis following hypoxic-ischemic injury to the young rat brain. Mol Brain Res 25, 19–33.

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry W. S., Harper J W., O’Connor P M, Velculescu V E, Canman C. E., Jackman J, Pietenpol J A., Burrell M., Hill D E, Wang Y., Wiman K. G, Mercer W. E., Kastan M B., Kohn K. W., Elledge S J, Kinzler K W, and Vogelstein B. (1994) WAF1/CIP1 is induced in p53-mediated Gl arrest and apoptosis. Cancer Res 54, 1169–1174

    PubMed  CAS  Google Scholar 

  • Farmer G., Bargonetti J, Zhu H, Friedman P, Prywes R., and Prives C (1992) Wild-type p53 activates transcription in vitro Nature 358, 83–86.

    Article  PubMed  CAS  Google Scholar 

  • Filipowski R K, Hetman M, Kaminska B, and Kaczmarek L. (1994) DNA fragmentation in rat brain after intraperitoneal administration of kainate NeuroReport 5, 1538–1540.

    Article  Google Scholar 

  • Freeman R S., Estus S., and Johnson E M (1994) Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of cyclin D1 during programmed cell death. Neuron 12, 343–355

    Article  PubMed  CAS  Google Scholar 

  • Ham J., Babij C, Whitfield J, Pfarr C. M., Lallemand D., Yaniv M., and Rubin L. L (1995) A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death Neuron 14, 927–939

    Article  PubMed  CAS  Google Scholar 

  • Heron A, Pollard H., Dessi F, Moreau J, Lasbennes F, Ben-Ari Y., and Charriaut-Marlangue C (1993) Regional variability in DNA fragmentation after global ischemia evidenced by combined histological and gel electrophoresis observations in the rat brain J Neurochem 61, 1973–1976

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B., and Harris C C. (1991) p53 mutations in human cancers Science 253, 49–53

    Article  PubMed  CAS  Google Scholar 

  • Kastan M B, Onyerkwere O., Sidransky D, Vogelstein B, and Craig R W (1991) Participation of p53 protein in the cellular response to DNA damage Cancer Res 53, 6304–6311

    Google Scholar 

  • Kern S E., Kinzler K. W, Bruskin A, Jarosz D, Friedman P., Prives C, and Vogelstein B. (1991) Identification of p53 as a sequence-specific DNA-binding protein Science 252, 1708–1711.

    Article  PubMed  CAS  Google Scholar 

  • Kuerbitz S J, Plunkett B S., Walsh W. V, and Kastan M. B. (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation Proc Natl Acad Sci USA 89, 7491–7495.

    Article  PubMed  CAS  Google Scholar 

  • Lane D. P. (1992) p53, guardian of the genome Nature 358, 15–16.

    Article  PubMed  CAS  Google Scholar 

  • Lassman H., Bancher C, Breitschopf H., Wegiel J., Bobmski M., Jellinger K., and Wismewski H M (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation in situ Acta Neuropathol 89, 35–41

    Article  Google Scholar 

  • Levine A. J., Momand J, and Finlay C. A. (1991) The p53 tumor suppressor gene. Nature 351, 453–456

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Chopp M., Zhang Z. G., Zaloga C, Niewenhuis L., and Gautam S. (1994) p53-immunoreactive protein and p53 mRNA expression after transient middle cerebral artery occlusion in rats. Stroke 25, 849–856

    PubMed  CAS  Google Scholar 

  • MacManus J P, Hill I E, Huang Z-G., Rasquinha I., Xue D, and Buchan A. M. (1994) DNA damage consistent with apoptosis in transient focal ischaemic neocortex. NeuroReport 5, 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Manev H., Kharlamov A, and Armstrong D. M (1994) Photochemical brain injury in rats triggers DNA fragmentation p53 and HSP72 NeuroReport 5, 2661–2664.

    Article  PubMed  CAS  Google Scholar 

  • Nitecka L, Tremblay E., Charton G, Bouillot J. P., Berger M. L, and Ben-Ari Y (1984) Maturation of kainic acid seizure-brain damage syndrome in the rat II Histo-pathological sequelae Neuroscience 13, 1073–1094

    Article  PubMed  CAS  Google Scholar 

  • Pollard H., Charriaut-Marlangue C, Cantagrel S, Represa A, Robain O., Moreau J., and Ben-Ari Y (1994) Kainate-induced apoptotic cell death in hippocampal neurons Neuroscience 63, 7–18

    Article  PubMed  CAS  Google Scholar 

  • Portera-Cailliau C, Hedreen J C, Price D L., and Koliatsos V. E. (1995) Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models J Neurosci. 15, 3775–3787

    PubMed  CAS  Google Scholar 

  • Ryan J. J., Danish R., Gottlieb C A., and Clarke M. F (1993) Cell cycle analysis of p53-mduced death in murine erythroleukemia cells Mol Cell Biol 13, 711–719.

    PubMed  CAS  Google Scholar 

  • Sakhi S, Bruce A., Sun N, Tocco G, Baudry M, and Schreiber S S (1994) p53 induction is associated with neuronal damage in the central nervous system Proc Natl Acad Sci USA 91, 7525–7529.

    Article  PubMed  CAS  Google Scholar 

  • Sakhi S, Bruce A., Sun N, Tocco G., Baudry M, and Schreiber S. S. (1995) Excitotoxin-mduced apoptosis in organotypic hippocampal cultures p53 upregulation and DNA fragmentation Exp Neurol, in press.

    Google Scholar 

  • Schreiber S. S., Sakhi S., Millicent M. Dugich-Djordjevic and Nichols N. R (1994) Tumor suppressor p53 induction and DNA damage in hippocampal granule cells after adrenalectomy. Exp. Neurol 130, 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber S. S, Tocco G., Najm I, Thompson R. F., and Baudry M. (1993) Cycloheximide prevents kainate-induced neuronal death and c-fos expression in adult rat brain J Mol Neurosci 4, 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Schwob J. E., Fuller T., Price J. L, and Olney J. W. (1980) Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience 5, 991–1014

    Article  PubMed  CAS  Google Scholar 

  • Shaw P., Bovey R, Tardy S., Sahli R, Sordat B, and Costa J. (1992) Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 89, 4495–4499

    Article  PubMed  CAS  Google Scholar 

  • Shi Y., Glynn J M., Guilbert L J., Cotter T. G., Bissonnette R P., and Green D R. (1992) Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas Science 257, 212–214

    Article  PubMed  CAS  Google Scholar 

  • Sloviter R S, Dean E, and Neubort S. (1993a) Electron microscopic analysis of adrenalectomy-induced hippocampal granule cell degeneration in the rat: apoptosis in the adult central nervous system J Comp Neurol 330, 337–351

    Article  PubMed  CAS  Google Scholar 

  • Sloviter R. S., Sollas A L, Dean E., and Neubort S (1993b) Adrenalectomy-induced granule cell degeneration in the rat hippocampal dentate gyrus: characterization of an in vivo model of controlled neuronal death J Comp Neurol 330, 324–336

    Article  PubMed  CAS  Google Scholar 

  • Smeyne R. J., Vendrell M, Hayward M., Baker S J, Miao G. G, Schilling K., Robertson L. M., Curran T., and Morgan J I. (1993) Continuous c-fos expression precedes programmed cell death in vivo Nature 363, 166–169

    Article  PubMed  CAS  Google Scholar 

  • Steller H. (1995) Mechanisms and genes of cellular suicide Science 267, 1445–1449.

    Article  PubMed  CAS  Google Scholar 

  • Su J H., Anderson A J, Cummings B J, and Cotman C. W. (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease NeuroReport 5, 2529–2533

    Article  PubMed  CAS  Google Scholar 

  • Thompson C B (1995) Apoptosis in the pathogenesis and treatment of disease Science 267, 1456–1462.

    Article  PubMed  CAS  Google Scholar 

  • Wood K. A and Youle R J. (1995) The role of free radicals and p53 in neuron apoptosis in vivo, J Neurosci 15, 5851–5857.

    PubMed  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, and Oren M. (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352, 345–347

    Article  PubMed  CAS  Google Scholar 

  • Zhan Q., Carrier F., and Fornace A. J., Jr (1993) Induction of cellular p53 activity by DNA-damaging agents and growth arrest Mol Cell Biol 13, 4242–4250.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Sakhi, S., Schreiber, S.S. (1997). p53 Induction Is a Marker of Neuronal Apoptosis in the Central Nervous System. In: Poirier, J. (eds) Apoptosis Techniques and Protocols. Neuromethods, vol 29. Humana Press. https://doi.org/10.1385/0-89603-451-8:85

Download citation

  • DOI: https://doi.org/10.1385/0-89603-451-8:85

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-451-8

  • Online ISBN: 978-1-59259-634-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics