Skip to main content

Measurement of Polyamine Efflux from Cells in Culture

  • Protocol
Polyamine Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 79))

  • 1130 Accesses

Abstract

The polyamines are cellular growth factors in most living organisms. Cells that are rapidly growing require high polyamine concentrations, whereas quiescent cells maintain comparatively low polyamine concentrations (1,2). This was shown to be the case in normal baby hamster kidney (BHK) fibroblasts grown to confluence (3). Here cells that were undergoing density-dependent inhibition of growth had significantly lower total polyamine content than cells in exponential growth. The question was, then, how did the cell decrease its polyamine content in response to the decreased growth rate? Analysis of the fate of radiolabeled polyamines showed that polyamines were released from quiescent cells into the extracellular medium (46). The efflux was found to be specific for N 1-acetylspermidine and to be regulated in concert with the growth rate of the cell (3,7). Efflux is an integral part of the regulatory process responsible for controlling the intracellular polyamine content of cells. In addition, such factors as drugs (8,9), virus infection (10,11), and cell transformation (12) have all been found to alter the efflux of polyamines from cells in culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janne, J., Poso, H., and Rama, A. (1978) Polyamines in rapid growth and cancer. Biochim. Biophys. Acta 473, 241–293.

    PubMed  CAS  Google Scholar 

  2. Pegg, A. E. (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234, 249–262.

    PubMed  CAS  Google Scholar 

  3. Wallace, H. M. and Keir, H. M. (1981) Uptake and excretion of polyamines from baby hamster kidney cells (BHK-21/C13). The effect of serum on confluent cell cultures. Biochim. Biophys. Acta 676, 25–30.

    PubMed  CAS  Google Scholar 

  4. Melvin, M. A. L. and Ken, H. M. (1978) Polyamine metabolism in BHK-21/C13 cells. Loss of spermidine from cells following transfer to serum depleted medium. Exptl. Cell Res. 111, 231–236.

    Article  PubMed  CAS  Google Scholar 

  5. Melvin, M. A. L., Wallace, H. M., and Keir, H. M. (1980) Conjugation of polyamines in mammalian cells in culture. Physiol. Chem. Phys. 12, 431–439.

    PubMed  CAS  Google Scholar 

  6. Wallace, H. M. (1987) Polyamine catabolism in mammalian cells excretion and acetylation. Med. Sci. Res. 15, 1437–1440.

    CAS  Google Scholar 

  7. Wallace, H. M., MacGowan, S. H., and Keir, H. M. (1985) Polyamine metabolism in mammalian cells in culture. Biochem. Soc. Trans. 13, 329, 330.

    PubMed  CAS  Google Scholar 

  8. Wallace, H. M. and Keir, H. M. (1986) Factors affecting polyamine excretion from mammalian cells in culture. FEBS Lett. 194, 60–63.

    Article  PubMed  CAS  Google Scholar 

  9. Mackarel, A. J. and Wallace, H. M. (1994) An investigation of the mechanism of polyamine efflux from human colorectal carcinoma cells. Biochem. Soc. Trans. 22, 388S.

    PubMed  CAS  Google Scholar 

  10. Wallace, H. M. and Keir, H. M. (1981) Excretion of polyamines from baby hamster kidney cells (BHK-21/C13) effect of infection with herpes simplex virus type I). J. Gen. Virol. 56, 251–258.

    Article  PubMed  CAS  Google Scholar 

  11. Wallace, H. M., Nuttall, M. E., and Coleman, C. S. (1988) Polyamine recycling enzymes in human cancer cells. Adv. Exptl. Biol. Med. 250, 331–344.

    CAS  Google Scholar 

  12. Wallace, H. M. and Keir, H. M. (1982) A comparison of polyamine metabolism in normal and transformed baby hamster kidney cells. Biochem. J. 202, 785–790.

    PubMed  CAS  Google Scholar 

  13. Casero, R. A. and Pegg, A. E. (1993) Spermidine/spermine N1-acetyltransferase—the turning point in polyamine metabolism. FASEB J. 7, 653–661.

    PubMed  CAS  Google Scholar 

  14. Abdel-Monen, M. M., Ohno, K., Fortuny, I. E., and Theologides, A. (1975) Acetylspermidines in human urine. Lancet ii, 1210.

    Article  Google Scholar 

  15. Russell, D. H. (1971) Increased polyamine concentrations in the urine of human cancer patients. Nature 233, 144, 145.

    CAS  Google Scholar 

  16. Rosenblum, M. G., Durie, B. G. M., Beckerman, R. C., Taussig, L. M., and Russell, D. H. (1978) Cystic fibrosis decreased conjugation and excretion of [14C]-spermidine. Science 200, 1496, 1497.

    Article  PubMed  CAS  Google Scholar 

  17. Russell, D. H., Giles, H. R., Christian, C. D., and Campbell, J. L. (1978) Polyamines in amniotic fluid, plasma and urine during normal pregnancy. Am. J. Obstet. Gynaecol. 132, 649–652.

    CAS  Google Scholar 

  18. Russell, D. H., Durie, B. G., and Salmon, S. E. (1975) Polyamines as predictors of success and failure in cancer chemotherapy. Lancet ii, 797–799.

    Article  Google Scholar 

  19. Hirsch, J. G. (1953) Spermine oxidase: an amine oxidase with specificity for spermine and spermidine. J. Exp. Med. 97, 345–355.

    Article  PubMed  CAS  Google Scholar 

  20. Blaschko, H. and Hawes, R. (1959) Observations on spermine oxidase in mammalian plasma. J. Physiol. 145, 124–131.

    PubMed  CAS  Google Scholar 

  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  22. Seiler, N. and Knodgen, B. (1980) High performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J. Chromatog. 221, 227–235.

    Article  CAS  Google Scholar 

  23. Wallace, H. M., Nuttall, M. E., and Robinson, F. C. (1988) Acetylation of spermidine and methylglyoxal bis(guanylhydrazone) in baby hamster kidney cells (BHK-21/C13). Biochem. J. 253, 223–227.

    PubMed  CAS  Google Scholar 

  24. Pojanpelto, P. (1976) Putrescine transport is greatly increased in human fibroblasts initiated to proliferate. J. Cell Biol. 68, 512–520.

    Article  Google Scholar 

  25. Freshney, R. I. (1987) Culture of Animal Cells. A Manual of Basic Techniques. Liss, New York.

    Google Scholar 

  26. MacGowan, S. H., Keir, H. M., and Wallace, H. M. (1987) Presence of a tissue-type polyamine oxidase activity in mammalian serum. Med. Sci. Res. 15, 687.

    CAS  Google Scholar 

  27. Brunton, V. G., Grant, M. H., and Wallace, H. M. (1994) Spermine toxicity in BHK-21/C13 cells in the presence of bovine serum: the effect of aminoguanidine. Toxicol In Vitro 8, 337–341.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Wallace, H.M., Mackarel, A.J. (1998). Measurement of Polyamine Efflux from Cells in Culture. In: Morgan, D.M.L. (eds) Polyamine Protocols. Methods in Molecular Biology™, vol 79. Humana Press. https://doi.org/10.1385/0-89603-448-8:157

Download citation

  • DOI: https://doi.org/10.1385/0-89603-448-8:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-448-8

  • Online ISBN: 978-1-59259-565-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics