Skip to main content

Phosphorylation State-Specific Antibodies

  • Protocol
Regulatory Protein Modification

Part of the book series: Neuromethods ((NM,volume 30))

Abstract

Over the past four decades, studies directed toward the elucidation of mechanisms involved in the hormonal regulation of metabolism have burgeoned into the field we now know as cellular signal transduction. Both then and now, the role of protein phosphorylation has been central to these investigations, and most physiological processes appear to be subject to phosphorylation-dependent modulation. Detection and quantitation of changes in the state of phosphorylation of specific proteins is of great utility in the quest to establish the function of a given protein and the consequences of its reversible phosphorylation. Two methods commonly used to measure protein phosphorylation and dephosphorylation in cell preparations employ prelabeling with ♪32P or back phosphorylation (see Chapters l-3). These methods continue to be very effective and have advantages for many test systems, but they do have several practical and theoretical limitations (Nestler and Greengard, 1984; Chapters 1–3, this volume). Based in large part on the successful use of short synthetic peptides to produce epitope-targeted antibodies (Lerner, 1982; Sutcliffe et al., 19831, an immunochemical approach became an attractive alternative for detecting changes in the state of phosphorylation of specific proteins at a specific site. The use of phosphorylation state-specific antibodies takes advantage of the sensitivity and selectivity afforded by immunochemical methodology, combined with relatively simple preparation and potentially broad applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt, A., Palczewski, K., Moore, W. T., Caprroli, R. M., McDowell, J. H., and Hargrave, P. A. (1989) Synthesis of phosphopeptides con-taming O-phosphoserine and O-phosphothreonine. lnt J. Pep Pro-tein Res 33, 468–476.

    Article  CAS  Google Scholar 

  • Biernat, J, Mandelkow, E. M., Schroter, C., Lichtenberg-Kraag, B., Sterner, B, Berling, B., Meyer, H., Mercken, M., Vandermeeren, A, Goedert, M, and Mandelkow, E. (1992) The switch of tau protein to an Alzheimer-like state includes the phosphorylation of two serine-proline motifs upstream of the microtubule-binding region. EMBO J 11, 1593–1597.

    PubMed  CAS  Google Scholar 

  • Coghlan, M. P., Pillay, T. S, Tavare, J M., and Siddle, K. (1994) Site-specific anti-phosphopeptide antibodies: use in assessing insulin receptor serine/threonine phosphorylation state and identification of serme-1327 as a novel site of phorbol esterinduced phosphorylation. Btochem J. 303, 893–899.

    CAS  Google Scholar 

  • Czernik, A. J., Girault, J.-A., Nairn, A. C., Chen, J, Snyder, G., Kebabian, J, and Greengard, P. (1991) Production of phosphorylation state-specific antibodies, in Methods in Enzymology, Protein Phosphorylation, Part B vol 201 (Hunter, T and Sefton, B. M, eds.), Academic, San Diego, CA, pp. 264–283.

    Google Scholar 

  • Czernik, A. J., Mathers, J, Tsou, K., Greengard, P., and Mische, S M. (1995) Phosphorylation state-specific antibodies preparation and applications Neuroprotocols 6, 56–61.

    CAS  Google Scholar 

  • Davis, F. M., Tsao, T. Y, Fowler, S. K., and Rao, P. N. (1983) Monoclonal antibodies to mitotic cells. Proc Nat1 Acad Sci USA 80, 2926–2930

    Article  CAS  Google Scholar 

  • De Jongh, K. S., Murphy, B. J., Colvin, A A., Hell, J. W., Takahashi, M., and Catterall, W. A. (1996) Specific phosphorylation of a site in the fulllength form of the αl subunit of the cardiac L~type calcium channel by adenosme 3′, 5′-cyclic monophosphate~dependent protein kinase. Biochemistry 35, 10,392–10,402.

    Article  PubMed  Google Scholar 

  • Drago, G. A. and Colyer, J. (1994) Discrimination between two sites of phosphorylation on adjacent ammo acids by phosphorylation sitespecific antibodies to phospholamban. J Biol Chem 269, 25,073–25,077.

    PubMed  CAS  Google Scholar 

  • Fields, C G, Lloyd, D H, Macdonald, R. L, Ottesen, K. M., and Noble, R L. (1990) HBTU activation for automated Fmoc solid phase peptide synthesis. Peptide Res 4, 95–101.

    Google Scholar 

  • Fisone, G., Cheng, S. X.-J., Nairn, A. C., Czernik, A. J., Hemmings, H. C, Jr, Höog, J. O., Bertorello, A M., Kaiser, R., Bergman, T., J#x00F6;rnvall, H., Aperia, A., and Greengard, P (1994) Identification of the phosphorylation site for cAMP-dependent protein kinase on the Na+, K+-ATPase and effects of sitedirected mutagenesis. J.Biol Chem 269, 9368–9373.

    PubMed  CAS  Google Scholar 

  • Frank, A. W. (1984) Synthesis and properties of N−,O−, and S-phospho-derivatives of amino acids, peptides and proteins. CRC Crit Rev. Biochem 16, 51–101.

    Article  PubMed  CAS  Google Scholar 

  • King, D. S., Fields, C. G., and Fields, G. B (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis lnt J Pep Protein Res 36, 255–266.

    Article  CAS  Google Scholar 

  • Ginty, D. D., Kornhauser, J M, Thompson, M. A., Bading, H., Mayo, K. E., Takahashi, J. S., and Greenberg, M. E. (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260, 238–241.

    Article  PubMed  CAS  Google Scholar 

  • Goedert, M., Takes, R., Crowther, R. A., Six, J., Lübke, U., Vandermeeren, M., Cras, P., Trojanowski, J. Q., and Lee, V. M.−Y (1993) The abnormal phosphorylation of tau protein at Ser 202 in Alzheimer disease recapitulates phosphorylation during development. Proc Natl Acad Sci. USA 90, 5066–5070.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M., Lee, K. Y., Lew, J. Y., Harada, K., Wu, J., Haycock, J. W., Hokfelt, T., and Deutch, A. Y (1995) Antibodies to a segment of tyrosine hydroxylase phosphorylated at serme−40. J.Neurochem. 64, 2281–2287.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Weeks, P. R., Mansfield, S. G., Alberto, C., Johnstone, M., and Moya, F. (1993) A phosphorylation epitope on MAP 1B that is transiently expressed in growing axons in the developing rat nervous system. Eur J. Neurosci 5, 1302–1311.

    Article  PubMed  CAS  Google Scholar 

  • Greengard, P., Valtorta, F., Czernik, A. J., and Benfenati, F. (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780–785.

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal, I., Iqbal, K., Tung, Y.−C., Quinlan, M., Wisniewski, H M., and Binder, L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad Sci USA 83, 4913–4917.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, E. and Lane, D. (1988) Antibodies A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 288–318.

    Google Scholar 

  • Hemmings, H. C., Jr., Nairn, A. C, Elliott, J. I., and Greengard, P. (1990) Synthetic peptide analogs of DARPP−32 (Mr 32,000 dopamine and cAMP-regulated phosphoprotein), an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation, and inhibitory activity. J. Biol. Chem 265, 20,369–20,376

    PubMed  CAS  Google Scholar 

  • Iwata, S.-I., Hewlett, G. H. K., Ferrell, S. T., Czernik, A. J., Meiri, K. F., and Gnegy, M. E. (1996) Increased in vivo phosphorylation state of neuromoduim and synapsin I in striatum from rats treated with repeated amphetamine j Pharmacol Exp Therap 278, 1428–1434

    CAS  Google Scholar 

  • Jovanovic, J N., Benfenati, F., Siow, Y. L., Sihra, T. S, Sanghera, J. S, Pelech, S. L., Greengard, P., and Czernik, A. J. (1996) Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions Proc Natl Acad.Sci USA 93, 3679–3683.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, B. E and Pearson, R B. (1990) Protein kinase recognition sequence motifs. Trends Biochem Sci 15, 342–346

    Article  PubMed  CAS  Google Scholar 

  • Kennelly, P. J. and Krebs, E G. (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol Chem. 266, 15,555–15,558.

    PubMed  CAS  Google Scholar 

  • Kosik, K. S., Duffy, L. K., Dowling, M M., Abraham, C., McCluskey, A, and Selkoe, D. J (1984) Microtubule-associated protein 2. monoclonal antibodies demonstrate the selective incorporation of certain epitopes into Alzheimer neurofibrillary tangles. Proc Natl Acad Sei USA 81, 7941–7942

    Article  CAS  Google Scholar 

  • Kwon, Y.-G, Lee, S-Y., Choi, Y, Nairn, A. C, and Greengard, P (1997) Cell cycle-dependent regulation of mammalian protein phoshatase by threonme-230 phosphorylation. (Submitted for publication).

    Google Scholar 

  • Lee, V. M., Carden, M. J., Schlaepfer, W. W., and Trojanowski, J. Q (1987) Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci. 7, 3474–3488.

    PubMed  CAS  Google Scholar 

  • Lee, V. M.-Y., Balin, B. J., Otvos, L., and Trojanowski, J. Q (1991) A68 a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251, 675–678

    Article  PubMed  CAS  Google Scholar 

  • Lemer, R. A. (1982) Tapping the immunological repertoire to produce antibodies of predetermined specificity Nature (London) 299, 593–596.

    Google Scholar 

  • Li, L, Chin, L-S., Shupliakov, O., Brodin, L, Sihra, T. S., Hvalby, ∅, Jensen, V., Zheng, D., McNamara, J. O., Greengard, P., and Andersen, P. (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin Ideficient mice. Proc Natl Acad Sci USA 92, 9235–9239

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg-Kraag, B., Mandelkow, E-M., Biernat, J., Steiner, B, Schroter, C., Gustke, N., Meyer, H. E., and Mandelkow, E. (1992) Phosphorylation-dependent epitopes of neurofilament antibodies on tau protein and relationship with Alzheimer tau. Proc Nati Acad Sci USA 89, 5384–5388.

    Article  CAS  Google Scholar 

  • Luca, F. C., Bloom, G. S., and Vallee, R. B. (1986) A monoclonal antibody that crossreacts with phosphorylated epitopes on two microtubule-associated proteins and two neurofilament polypeptides. Proc Natl. Acad Sci USA 83, 1006–1010

    Article  PubMed  CAS  Google Scholar 

  • Marin, P., Nastiuk, K. L., Daniel, N., Girauit, J.-A., Czernik, A. J., Glowinski, J., Nairn, A. C., and Prémont, J. (1996) Glutamate dependent phosphorylation of elongation factor-2 and inhibition of protein synthesis in neurons, submitted for publication.

    Google Scholar 

  • Mathers, J C., Gharahdaghi, F., and Mische, S. M. (1994) FMOC solid phase synthesis of phosphopeptides, in Techniques in Protein Chemistry V (Crabb, J., ed.), Academic, San Diego, CA, pp. 477–484.

    Google Scholar 

  • Meiri, K. F., Bickerstaff, L. E., and Schwab, J. E. (1991) Monoclonal antibodies show that kmase C phosphorylation of GAP-43 during axonogenesis is both spatially and temporally restricted in vivo. I CellBiol 112, 991–1005.

    Article  CAS  Google Scholar 

  • Nairn, A. C., Detre, J. A, Casnellie, J. E., and Greengard, P. (1982) Serum antibodies that distinguish between the phospho-and dephospho forms of a phosphoprotein. Nature (London) 299, 734–736.

    Article  CAS  Google Scholar 

  • Nestler, E. J. and Greengard, P (1984) Protein Phosphorylation in the Nervous System, Wiley, NY, pp. 96–98; 284–285.

    Google Scholar 

  • Oishi, M, Nairn, A. C., Czernik, A. J., Lim, G. S., Isohara, T., Candy, S E., Greengard, P., and Suzuki, T. (1996) The cytoplasmic domain of the Alzheimer β-amyloid precursor protein is phosphorylated at Thr-654, Ser-655 and Thr-668 in adult rat brain and cultured cells. Mol. Med in press.

    Google Scholar 

  • Otvos, L., Jr., Feiner, L, Lang, E, Szendrei, G I., Goedert, M, and Lee, V. M-Y. (1994) Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at seine residues 396 and 404. J Neurosci Res 39, 669–673.

    Article  PubMed  CAS  Google Scholar 

  • Patton, B. L., Molloy, S. S., and Kennedy, M. B. (1993) Autophosphorylation of type II CaM kinase in hippocampal neurons: localization of phospho and dephosphokinase with complementary phosphorylation sitespecific antibodies. Mel Biol Cell 4, 159–172

    CAS  Google Scholar 

  • Perich, J. W. and Johns, R. B. (1988) Di-tert-butyl N,N-diethylphosphoramidite. A new phosphitylating agent for the efficient phosphorylation of alcohols. Tetrahedron Lett. 29, 2369–2372.

    Article  CAS  Google Scholar 

  • Pieribone, V., Shupliakov, O., Brodin, L., Hilfiker-Rothenfluh, S., Czernik, A. J., and Greengard, P. (1995) Distinct pools of vesicles in neurotransmitter release. Nature (London) 375, 493–497

    Article  CAS  Google Scholar 

  • Riederer, B. M. (1995) Differential phosphorylation of MAPlb during postnatal development of the cat brain. J. Neurocytol 24, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Ross, A. H., Baltimore, D., and Eisen, H. N. (1981) Phosphotyrosine-containing proteins isolated by affinity chromatography with antibodies to a synthetic hapten. Nature (London) 294, 654–656.

    Article  CAS  Google Scholar 

  • Schlesinger, D. H., Buku, A., Wyssbrod, H. R., and Hay, D. I. (1987) Chemical synthesis of phosphoseryl-phosphoserine, a partial analogue of human salivary statherin, a protein inhibitor of calcium phosphate precipitation in human saliva. Int. J Pep. Protein Res. 30, 257–262.

    Article  CAS  Google Scholar 

  • Smith, S. C, McAdam, W. J., Kemp, B. E., Morgan, F. J., and Cotton, R. G H. (1987) A monoclonal antibody to the phosphorylated form of phenylalanine hydroxylase. Biochem J 244, 625–631.

    PubMed  CAS  Google Scholar 

  • Snyder, G. L., Girault, J.-A., Chen, J. Y. C., Czernik, A. J., Kebabian, J. W., Nathanson, J A, and Greengard, P. (1992) Phosphorylation of DARPP-32 and protein phosphatase inhibitor-l: regulation by factors other than dopamine. J.Neurosci 12, 3071–3083

    PubMed  CAS  Google Scholar 

  • Sternberger, L A and Sternberger, N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ Proc Natl. Acad. Sci USA 80, 6126–6130.

    Article  CAS  Google Scholar 

  • Sutcliffe, J. G., Shinnick,T. M., Green, N, and Lerner, R. A (1983) Antibodies that react with predetermined sites on proteins. Science 219, 660–666.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Oishi, M, Marshak, D. R., Czernik, A. J., Nairn, A. C., and Greengard, P (1994) Cell cycle-dependent regulation of the phosphorylation and metabolism of the Alzhelmer amyloid precursor protein. EMBO J 13, 1114–1122.

    PubMed  CAS  Google Scholar 

  • Suzuki, T., Okumura-Noji, K., Ogura, A., Kudo, Y., and Tanaka, R. (1992) Antibody specific for the Thr-286-autophosphorylated α subunit of Ca2+/calmodulin-dependent protein kinase II. Proc Nat1 Acad SCi.-USA 89, 109–113.

    Article  CAS  Google Scholar 

  • Walter, G. (1986) Production and use of antibodies against synthetic peptides. J. lmmunol Methods, 88, 149–161.

    Article  CAS  Google Scholar 

  • Westendorf, J. M, Rao, P. N., and Gerace, L(1994) Cloning of cDNAs for M-phase phosphoproteins recognized by the MPM2 monoclonal antibody and determination of the phosphorylated epitope. Proc Nutl. Acud. Sei USA 91, 714–718.

    Article  CAS  Google Scholar 

  • Yamagata, Y., Obata, K., Greengard, P, and Czernik, A. J. (1995) Increase in synapsin I phosphorylation implicates a presynaptic component in septal kindling. Neuroscience 64, 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Yano, T., Taura, C., Shibata, M., Hirono, Y., Ando, S., Kusubata, M, Takahashi, T, and Inagaki, M. (1991) A monoclonal antibody to the phosphorylated form of glial fibrrllary acidic protein. application to a non-radioactive method for measuring protein kinase activities. Biochem. Biophys Res. Commun 175, 1144–1151.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Czernik, A.J., Mathers, J., Mische, S.M. (1997). Phosphorylation State-Specific Antibodies. In: Hemmings, H.C. (eds) Regulatory Protein Modification. Neuromethods, vol 30. Humana Press. https://doi.org/10.1385/0-89603-415-1:219

Download citation

  • DOI: https://doi.org/10.1385/0-89603-415-1:219

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-415-0

  • Online ISBN: 978-1-59259-635-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics