Skip to main content

Microbial biosensors based on oxygen electrodes

  • Protocol

Part of the Methods in Biotechnology book series (MIBT,volume 6)

Abstract

Microbial sensors are based on microorganisms in intimate contact with a transducer, which converts the biochemical signal into a quantifiable electrical response signal. The aim of this combination is the sensitive determination of a large spectrum of substances in various fields, especially in brotechnology and pollution control. The use of microbial cells in place of isolated enzymes offers several advantages over enzyme electrodes, such as, elimination of the tedious enzyme extraction and purification steps, avoidance of the need for a cofactor, and increased stability. The microbial sensors show an increased stability because of the enzyme environment is optimized by evolution and well suited for recovery. These sensors are essentially living and may be fed and kept alive for a long period. Furthermore, the whole cell may perform multistep transformations that could be difficult, if not impossible, to achieve with single enzymes. However, microbial sensors suffer from the multireceptor behavior of intact cells, resulting in a rather poor selectivity. This ability to recognize a group of substances has been exploited for the determination of complex variables, such as the sum of biodegradable compounds in waste water (BOD) (1, 2 and mutagenicity of compounds (3). Moreover, the enormous wealth of microorganisms with a wide spectrum of metabolic types is an inexhaustible reserve for many uses of biosensors. A particular advantage is the ability to measure the respiratory activity of microorganisms and its alteration as a result of the presence of a tested substance.

Keywords

  • Biochemical Oxygen Demand
  • Dialysis Membrane
  • Oxygen Electrode
  • Measuring Chamber
  • Enzyme Electrode

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Karube, I, Matsunaga, T, Mitsuda, S, and Suzuki, S (1977) Microbial electrode BOD sensor. Biotechnol Bioeng. 19, 1535–1547.

    CrossRef  PubMed  CAS  Google Scholar 

  2. Riedel, K., Renneberg, R, Kuehn, M., and Scheller, F (1988) A fast estimation of BOD with microbial sensors. AppI Microbiol. Biotechnol 28, 316–318

    CAS  Google Scholar 

  3. Karube, I. and Suzuki, S. (1981) Preliminary screening of mutagens with a microbial sensor. Anal Chem. 53, 1024–1026.

    CrossRef  CAS  Google Scholar 

  4. Riedel, K, Renneberg, R, Wollenberger, U, Kaiser, G, and Scheller, F (1989) Microbial sensors fundamentals and application for process control. J. Chem. Tech Biotechnol. 44, 85–106

    CAS  Google Scholar 

  5. Matsunaga, T., Karube, I., and Suzuki, S. (1980) A specific microbial sensor for formic acid. Eur. J. Appl Microbiol Biotechnol 10, 235–243

    CrossRef  CAS  Google Scholar 

  6. Riedel, K, Liebs, P., Renneberg, R., and Scheller, F (1988) Characterization of the physiological state of microorganisms using the respiration electrode. Anal. Lett 21, 1305–1322

    CAS  Google Scholar 

  7. Kulys, J. and Kadziauskiene, K. (1980) Yeast BOD sensor Biotechn Bioeng 22, 221–226

    CrossRef  CAS  Google Scholar 

  8. Riedel, K., Huth, J, Kuhn, M., and Liebs, P. (1990) Amperometric determination of ammonium ions with a microbial sensor J. Chem. Tech. Biotechnol 47, 109–116.

    CAS  Google Scholar 

  9. Matsunaga, T., Karube, I, and Suzuki, S. (1978) Rapid determination of nicotinic acid by immobilized Lactobacillus arabinosus Anal Chim Acta 99, 233–239

    CrossRef  CAS  Google Scholar 

  10. Fukui, S and Tanaka, A. (1984) Application of biocatalysts immobilized by prepolymer methods. Adv Biochem Eng Biotechn 29, 2–33.

    Google Scholar 

  11. Riedel, K., Renneberg, R., and Liebs, P. (1988) Biochemical basis of kinetically controlled microbial sensors. Bioelectrochem Bioenerg. 19, 137–144.

    CrossRef  CAS  Google Scholar 

  12. Riedel, K (1991) Biochemical fundamentals and improvement of selectivity of microbial sensors—aminireview Bioelectrochem Bioenerg 25, 19–30.

    CrossRef  CAS  Google Scholar 

  13. Riedel, K. (1998) Application of biosensors to environmental samples, in Commercial Biosensors Application to Clinical, Bioprocess and Environmental Samples (Ramsay, G., ed), Wiley, New York, pp. 267–294.

    Google Scholar 

  14. Malek, J. (1966) Introduction, in Theoretical and Methodological Basis of Contiuous Culture of Microorganims (Malek, J. and Fencle, Z., eds.), Publishing House of the Czechoslovak Academy of Sciences, Prague, pp. 9–30.

    Google Scholar 

  15. Riedel, K., Liebs, P., and Renneberg, R. (1985) An electrochemical method for the determination of cell respiration. J. Basic Microb 25, 51–56.

    CrossRef  CAS  Google Scholar 

  16. Riedel, K, Uthemann, R., Yang, X., and Renneberg, R. (1998) Deter mination of BOD in waste water with a commercial combination sensor containing Rhodococcus erythropolis and Issatchenkia orientalis. Biosens. Bioelectron, submitted.

    Google Scholar 

  17. Riedel, K., Renneberg, R., and Scheller, F. (1990) Adaptable microbial sensors. Anal. Lett 23, 757–770.

    CAS  Google Scholar 

  18. Riedel, K. and Scheller, F. (1987) Inhibitor-treated microbial sensor for the selective determination of glutamic acid. Analyst 112, 341,342.

    CrossRef  Google Scholar 

  19. Riedel, K., Hensel, J., and Ebert, K. (1991) Biosensoren zur Bestinmung von Phenol und Benzoat auf der Basis von Rhodococcus-Zellen und Enzymextrakten (in German), Zbl Bakt 146, 425–434.

    CAS  Google Scholar 

  20. Renneberg, R., Riedel, K., Liebs, P., and Scheller, F. (1984) Microbial and hybrid sensors for determination of alpha-amylase activity. Anal. Lett. 17, 349–358.

    CAS  Google Scholar 

  21. Karube, I, Mitsuda, S., and Suzuki, S. (1979) Glucose sensor using immobilized whole cells of Pseudomonas fluorescens. Eur J. Appl. Microbiol Biotechn 7, 343–350.

    CrossRef  CAS  Google Scholar 

  22. Vais, H., Onancea, F., Faghi, A. M., Delcea, C., and Margineanu, D. G. (1985) Amperometric electrode for glucose with immobilized bacteria (Pseudomonas fluorescens). Rev. Roumaine Biochem 22, 57–62.

    CAS  Google Scholar 

  23. Mascini, M. and Memoli, A. (1986) Comparison of microbial sensors based on amperometric and potentiometric electrodes. Anal. Chim Acta 182, 113–122

    CrossRef  CAS  Google Scholar 

  24. Hikuma, M., Obana, H., and Yasuda, T. (1980) Amperometric determination of total assimilable sugars in fermentation broths with use of immobilized whole cells Enzyme Microbiol Techn 2, 234–238.

    CrossRef  CAS  Google Scholar 

  25. Svorc, J., Mieartius, S., and Barlikova, A. (1990) Hybrid biosensor for the determination of lactose. Anal. Chem. 32, 1626–1631.

    Google Scholar 

  26. Hikuma, M., Kubo, T, Yasuda, T., Karube, I., and Suzuki, S. (1979) Amperometric determination of acetic acid with immobilized Trichosporon brassicae. Anal Chim. Acta. 109, 33–38.

    CrossRef  CAS  Google Scholar 

  27. Vincke, B. J., Devleeschouwer, M. J., and Patriarche, G J (1985) Bacterial electrode for the analytical use of the L-tryptophane oxidative metabolism of Pseudomonas fluorescens. J. Pharm. Belg. 40, 357–365.

    CAS  Google Scholar 

  28. Renneberg, R., Riedel, K, and Scheller, F. (1985) Microbial sensor for aspartame. Appl Microbial. Biotechnol. 21, 180,181.

    CrossRef  CAS  Google Scholar 

  29. Riedel, K., Renneberg, R., Kleine, R., Kruger, M., and Scheller, F. (1988) Microbial sensor for peptides Appl Microbiol. Biotechnol. 28, 272–275.

    CAS  Google Scholar 

  30. Wollenberger, U., Scheller, F., and Atrat, P. (1980) Microbial membrane electrode for steroid assay. Anal. Lett 13, 1201–1210.

    CAS  Google Scholar 

  31. Vincke, B. J., Devleeschouwer, H. J., and Patriarche, G. J. (1985) Determination of l-ascorbic acid with bacterial tissue and enzyme electrodes. Anal Lett 18, 1593–1606

    CAS  Google Scholar 

  32. Karube, I., Wang, Y, Tamiya, E., and Kawarai, M. (1987) Microbial electrode sensor for vitamin B12. Anal. Chim. Acta 199, 93–97.

    CrossRef  CAS  Google Scholar 

  33. Karube, I., Suzuki, S., Okada, T., and Hikuma, M (1980) Microbial sensors for volatile compounds. Biochimie 62, 567–574.

    CrossRef  PubMed  CAS  Google Scholar 

  34. Hikuma, M, Kubo, T, Yasuda, T., Karube, I., and Suzuki, S. (1979) Microbial electrode sensor for alcohols Biotechn Bioeng 21, 1845–1853.

    CrossRef  CAS  Google Scholar 

  35. Divies, C. (1975) Ethanol oxidation by an Acetobacter xylinum microbial electrode. Ann. Microbial (Paris) 126A, 175–186

    CAS  Google Scholar 

  36. Mascini, M., Memoli, A., and Olana, F (1989) Microbial sensor for alcohol Enzyme Microbiol Technol 11, 297–301.

    Google Scholar 

  37. Suzuki, S. and Karube, I. (I987) An amperometric sensor for carbon dioxide based on nnmobilized bacteria utilizing carbon dioxide Anal Chim. Acta 199, 85–91.

    CrossRef  CAS  Google Scholar 

  38. Karube, I., Matsunaga, T., and Suzuki, S. (1979) Microbiassay of nystatin using yeast electrode Anal. Chim Acta 109, 39–44.

    CrossRef  CAS  Google Scholar 

  39. Hikuma, M., Kubo, T, Yasuda, T., Karube, I., and Suzuki, S. (1980) Ammonia electrode with unmobilized nitrifying bacteria. Anal. Chem 52, 1020–1024.

    CrossRef  CAS  Google Scholar 

  40. Okada, T., Karube, I, and Suzuki, S. (1982) Ammonium ion sensor based on immobilized nitrifying bacteria and a cation exchange membrane. Anal Chim Acta 135, 159–165.

    CrossRef  CAS  Google Scholar 

  41. Karube, I., Okada, T., and Suzuki, S. (1981) Amperometric determination of ammonia gas with unmobilized nitrifying bacteria. Anal Chem. 53, 1852–1855.

    CrossRef  CAS  Google Scholar 

  42. Karube, I., Okada, T, Suzuki, S., Suzuki, H, Hikuma, M, and Yasuda, T (1982) Amperometric determination of sodium nitrite by a microbial sensor. Eur J. Appl Microbiol Biotechnol 15, 127–132.

    CrossRef  CAS  Google Scholar 

  43. Okada, T., Karube, I., and Suzuki, S. (1983) NO2 sensor which uses immobilized nitrate oxidizing bacteria Biotechn Bioeng 25, 1641–1651

    CrossRef  CAS  Google Scholar 

  44. Okada, T., Karube, I., and Suzuki, S. (1982) Hybrid urea sensor using nitrifying bacteria Eur J. Appl Microbiol Biotechnol. 14, 149–154

    CrossRef  CAS  Google Scholar 

  45. Kubo, I., Osawa, M., Karube, I., Matsuoka, M, and Suzuki, S. (1983) Hybrid biosensor for clinical analysis. Proceedings of the International Meeting on Chemical Sensors, Fukuoka, Japan, pp. 660–665.

    Google Scholar 

  46. Gamati, S., Luong, J. H. T., and Mulchandani, A. (1991) A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosens. Bioelectron 6, 125–131.

    CrossRef  PubMed  CAS  Google Scholar 

  47. Matsunaga, T., Suzuki, S., and Tomoda, R. (1984) Photomicrobial sensors for selective determination of phosphate. Enzyme Microbial Techn. 6, 355–357.

    CrossRef  CAS  Google Scholar 

  48. Mandl, M. and Macholan, L (1990) Membrane biosensor for the determination of iron (II, III) based on immobilized cells of Thiobacillus ferrooxidans. Folia Microbiol 35, 363–367.

    CrossRef  CAS  Google Scholar 

  49. Okada, T., Karube, I., and Suzuki, S. (1981) Microbial sensor system which uses Methylomonas sp. for the determination of methane. Eur J. Appl. Microbiol. Biotechn 12, 102–106.

    CrossRef  CAS  Google Scholar 

  50. Neujahr, H. Y. and Kjellen, K. G. (1979) Bioprobe electrode for phenol. Biotechnol Bioeng. 21, 671–678.

    CrossRef  CAS  Google Scholar 

  51. Riedel, K., Hensel, J., and Ebert, K. (1991) Biosensoren zur Bestimmung von Phenol und Benzoat auf der Basis von Rhodo-coccus-Zellen und Enzymextrakten (in German). Zbl Bakt 146, 425–434.

    CAS  Google Scholar 

  52. Riedel, K., Beyersdorf-Radeck, B., Neumann, B., and Scheller, F. (1995) Microbial sensors for determination of aromatics and their chloroderivates. Part III: Determination of chlorinated phenols using a biosensors containing Trichossporon beigelii(cutaneum). Appl. Microbiol. Biotechnol. 43, 7–9.

    CrossRef  CAS  Google Scholar 

  53. Riedel, K., Hensel, J., Rothe, S., Neumann, B., and Scheller, F. (1993) Microbial sensors for determination of aromatics and their chloroderivates. Part II: Determination of chlorinated phenols using a Rhodococcus containing biosensors. Appl. Microbial. Biotechnol. 38, 556–559.

    CrossRef  CAS  Google Scholar 

  54. Riedel, K., Naumov, A. V., Boronin, L. A, Golovleva, L. A., Stein, J, and Scheller, F. (1991) Microbial sensors for determination of aromatics and their chloroderivates. Part I: Determination of 3-chlorobenzoate using a Pseudomonas containing biosensors. Appl. Microbial Biotechnol 35, 557–562.

    CrossRef  Google Scholar 

  55. Beyersdorf-Radek, B., Riedel, K., Neumann, B., Scheller, F., Schmid, R. D. (1991) Development of microbial sensors for determination of xenobiotics GBF Monographs 17, 55–60.

    Google Scholar 

  56. Beyersdorf-Radek, B., Schmid, R. D., Riedel, K., Neumann, B., and Scheller, F. (1991) Microbial sensors for the determination of aromatics and their chloroderivates. Proc Symp Environm Biotechnol Oostende 66th Event of the European Federation of Biotechnology (Verachtert, H. and Verstraete, W F., eds.), 65–68.

    Google Scholar 

  57. Tan, H.-M., Cheong, S.-P., and Tan, T.-C. (1994) An amperometric benzene sensor using whole cell Pseudomonas putida ML2. Biosens Bioelectron 9, 1–8.

    CrossRef  CAS  Google Scholar 

  58. König, A., Zaborosch, C, Muscat, A., Vorlop, K. D., and Spener, F. (1996) Microbial sensors for naphthaline using Spingomonas sp. Bl or Pseudomonas fluorescens WW4. Appl. Microbiol. Biotechnol 45, 844–850

    CrossRef  Google Scholar 

  59. Riedel, K., Naumov, A. V., Grishenkov, V. G., Boronin, A. M., Stein, J, Scheller, F., and Müller, H.-G. (1989) Plasmid-containing microbial sensors for caprolactam. Appl. Microbiol. Biotechnol. 31, 502–504.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Riedel, K. (1998). Microbial biosensors based on oxygen electrodes. In: Mulchandani, A., Rogers, K.R. (eds) Enzyme and Microbial Biosensors. Methods in Biotechnology, vol 6. Humana Press. https://doi.org/10.1385/0-89603-410-0:199

Download citation

  • DOI: https://doi.org/10.1385/0-89603-410-0:199

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-410-5

  • Online ISBN: 978-1-59259-484-9

  • eBook Packages: Springer Protocols