Abstract
Microbial sensors are based on microorganisms in intimate contact with a transducer, which converts the biochemical signal into a quantifiable electrical response signal. The aim of this combination is the sensitive determination of a large spectrum of substances in various fields, especially in brotechnology and pollution control. The use of microbial cells in place of isolated enzymes offers several advantages over enzyme electrodes, such as, elimination of the tedious enzyme extraction and purification steps, avoidance of the need for a cofactor, and increased stability. The microbial sensors show an increased stability because of the enzyme environment is optimized by evolution and well suited for recovery. These sensors are essentially living and may be fed and kept alive for a long period. Furthermore, the whole cell may perform multistep transformations that could be difficult, if not impossible, to achieve with single enzymes. However, microbial sensors suffer from the multireceptor behavior of intact cells, resulting in a rather poor selectivity. This ability to recognize a group of substances has been exploited for the determination of complex variables, such as the sum of biodegradable compounds in waste water (BOD) (1, 2 and mutagenicity of compounds (3). Moreover, the enormous wealth of microorganisms with a wide spectrum of metabolic types is an inexhaustible reserve for many uses of biosensors. A particular advantage is the ability to measure the respiratory activity of microorganisms and its alteration as a result of the presence of a tested substance.
Keywords
- Biochemical Oxygen Demand
- Dialysis Membrane
- Oxygen Electrode
- Measuring Chamber
- Enzyme Electrode
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Karube, I, Matsunaga, T, Mitsuda, S, and Suzuki, S (1977) Microbial electrode BOD sensor. Biotechnol Bioeng. 19, 1535–1547.
Riedel, K., Renneberg, R, Kuehn, M., and Scheller, F (1988) A fast estimation of BOD with microbial sensors. AppI Microbiol. Biotechnol 28, 316–318
Karube, I. and Suzuki, S. (1981) Preliminary screening of mutagens with a microbial sensor. Anal Chem. 53, 1024–1026.
Riedel, K, Renneberg, R, Wollenberger, U, Kaiser, G, and Scheller, F (1989) Microbial sensors fundamentals and application for process control. J. Chem. Tech Biotechnol. 44, 85–106
Matsunaga, T., Karube, I., and Suzuki, S. (1980) A specific microbial sensor for formic acid. Eur. J. Appl Microbiol Biotechnol 10, 235–243
Riedel, K, Liebs, P., Renneberg, R., and Scheller, F (1988) Characterization of the physiological state of microorganisms using the respiration electrode. Anal. Lett 21, 1305–1322
Kulys, J. and Kadziauskiene, K. (1980) Yeast BOD sensor Biotechn Bioeng 22, 221–226
Riedel, K., Huth, J, Kuhn, M., and Liebs, P. (1990) Amperometric determination of ammonium ions with a microbial sensor J. Chem. Tech. Biotechnol 47, 109–116.
Matsunaga, T., Karube, I, and Suzuki, S. (1978) Rapid determination of nicotinic acid by immobilized Lactobacillus arabinosus Anal Chim Acta 99, 233–239
Fukui, S and Tanaka, A. (1984) Application of biocatalysts immobilized by prepolymer methods. Adv Biochem Eng Biotechn 29, 2–33.
Riedel, K., Renneberg, R., and Liebs, P. (1988) Biochemical basis of kinetically controlled microbial sensors. Bioelectrochem Bioenerg. 19, 137–144.
Riedel, K (1991) Biochemical fundamentals and improvement of selectivity of microbial sensors—aminireview Bioelectrochem Bioenerg 25, 19–30.
Riedel, K. (1998) Application of biosensors to environmental samples, in Commercial Biosensors Application to Clinical, Bioprocess and Environmental Samples (Ramsay, G., ed), Wiley, New York, pp. 267–294.
Malek, J. (1966) Introduction, in Theoretical and Methodological Basis of Contiuous Culture of Microorganims (Malek, J. and Fencle, Z., eds.), Publishing House of the Czechoslovak Academy of Sciences, Prague, pp. 9–30.
Riedel, K., Liebs, P., and Renneberg, R. (1985) An electrochemical method for the determination of cell respiration. J. Basic Microb 25, 51–56.
Riedel, K, Uthemann, R., Yang, X., and Renneberg, R. (1998) Deter mination of BOD in waste water with a commercial combination sensor containing Rhodococcus erythropolis and Issatchenkia orientalis. Biosens. Bioelectron, submitted.
Riedel, K., Renneberg, R., and Scheller, F. (1990) Adaptable microbial sensors. Anal. Lett 23, 757–770.
Riedel, K. and Scheller, F. (1987) Inhibitor-treated microbial sensor for the selective determination of glutamic acid. Analyst 112, 341,342.
Riedel, K., Hensel, J., and Ebert, K. (1991) Biosensoren zur Bestinmung von Phenol und Benzoat auf der Basis von Rhodococcus-Zellen und Enzymextrakten (in German), Zbl Bakt 146, 425–434.
Renneberg, R., Riedel, K., Liebs, P., and Scheller, F. (1984) Microbial and hybrid sensors for determination of alpha-amylase activity. Anal. Lett. 17, 349–358.
Karube, I, Mitsuda, S., and Suzuki, S. (1979) Glucose sensor using immobilized whole cells of Pseudomonas fluorescens. Eur J. Appl. Microbiol Biotechn 7, 343–350.
Vais, H., Onancea, F., Faghi, A. M., Delcea, C., and Margineanu, D. G. (1985) Amperometric electrode for glucose with immobilized bacteria (Pseudomonas fluorescens). Rev. Roumaine Biochem 22, 57–62.
Mascini, M. and Memoli, A. (1986) Comparison of microbial sensors based on amperometric and potentiometric electrodes. Anal. Chim Acta 182, 113–122
Hikuma, M., Obana, H., and Yasuda, T. (1980) Amperometric determination of total assimilable sugars in fermentation broths with use of immobilized whole cells Enzyme Microbiol Techn 2, 234–238.
Svorc, J., Mieartius, S., and Barlikova, A. (1990) Hybrid biosensor for the determination of lactose. Anal. Chem. 32, 1626–1631.
Hikuma, M., Kubo, T, Yasuda, T., Karube, I., and Suzuki, S. (1979) Amperometric determination of acetic acid with immobilized Trichosporon brassicae. Anal Chim. Acta. 109, 33–38.
Vincke, B. J., Devleeschouwer, M. J., and Patriarche, G J (1985) Bacterial electrode for the analytical use of the L-tryptophane oxidative metabolism of Pseudomonas fluorescens. J. Pharm. Belg. 40, 357–365.
Renneberg, R., Riedel, K, and Scheller, F. (1985) Microbial sensor for aspartame. Appl Microbial. Biotechnol. 21, 180,181.
Riedel, K., Renneberg, R., Kleine, R., Kruger, M., and Scheller, F. (1988) Microbial sensor for peptides Appl Microbiol. Biotechnol. 28, 272–275.
Wollenberger, U., Scheller, F., and Atrat, P. (1980) Microbial membrane electrode for steroid assay. Anal. Lett 13, 1201–1210.
Vincke, B. J., Devleeschouwer, H. J., and Patriarche, G. J. (1985) Determination of l-ascorbic acid with bacterial tissue and enzyme electrodes. Anal Lett 18, 1593–1606
Karube, I., Wang, Y, Tamiya, E., and Kawarai, M. (1987) Microbial electrode sensor for vitamin B12. Anal. Chim. Acta 199, 93–97.
Karube, I., Suzuki, S., Okada, T., and Hikuma, M (1980) Microbial sensors for volatile compounds. Biochimie 62, 567–574.
Hikuma, M, Kubo, T, Yasuda, T., Karube, I., and Suzuki, S. (1979) Microbial electrode sensor for alcohols Biotechn Bioeng 21, 1845–1853.
Divies, C. (1975) Ethanol oxidation by an Acetobacter xylinum microbial electrode. Ann. Microbial (Paris) 126A, 175–186
Mascini, M., Memoli, A., and Olana, F (1989) Microbial sensor for alcohol Enzyme Microbiol Technol 11, 297–301.
Suzuki, S. and Karube, I. (I987) An amperometric sensor for carbon dioxide based on nnmobilized bacteria utilizing carbon dioxide Anal Chim. Acta 199, 85–91.
Karube, I., Matsunaga, T., and Suzuki, S. (1979) Microbiassay of nystatin using yeast electrode Anal. Chim Acta 109, 39–44.
Hikuma, M., Kubo, T, Yasuda, T., Karube, I., and Suzuki, S. (1980) Ammonia electrode with unmobilized nitrifying bacteria. Anal. Chem 52, 1020–1024.
Okada, T., Karube, I, and Suzuki, S. (1982) Ammonium ion sensor based on immobilized nitrifying bacteria and a cation exchange membrane. Anal Chim Acta 135, 159–165.
Karube, I., Okada, T., and Suzuki, S. (1981) Amperometric determination of ammonia gas with unmobilized nitrifying bacteria. Anal Chem. 53, 1852–1855.
Karube, I., Okada, T, Suzuki, S., Suzuki, H, Hikuma, M, and Yasuda, T (1982) Amperometric determination of sodium nitrite by a microbial sensor. Eur J. Appl Microbiol Biotechnol 15, 127–132.
Okada, T., Karube, I., and Suzuki, S. (1983) NO2 sensor which uses immobilized nitrate oxidizing bacteria Biotechn Bioeng 25, 1641–1651
Okada, T., Karube, I., and Suzuki, S. (1982) Hybrid urea sensor using nitrifying bacteria Eur J. Appl Microbiol Biotechnol. 14, 149–154
Kubo, I., Osawa, M., Karube, I., Matsuoka, M, and Suzuki, S. (1983) Hybrid biosensor for clinical analysis. Proceedings of the International Meeting on Chemical Sensors, Fukuoka, Japan, pp. 660–665.
Gamati, S., Luong, J. H. T., and Mulchandani, A. (1991) A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosens. Bioelectron 6, 125–131.
Matsunaga, T., Suzuki, S., and Tomoda, R. (1984) Photomicrobial sensors for selective determination of phosphate. Enzyme Microbial Techn. 6, 355–357.
Mandl, M. and Macholan, L (1990) Membrane biosensor for the determination of iron (II, III) based on immobilized cells of Thiobacillus ferrooxidans. Folia Microbiol 35, 363–367.
Okada, T., Karube, I., and Suzuki, S. (1981) Microbial sensor system which uses Methylomonas sp. for the determination of methane. Eur J. Appl. Microbiol. Biotechn 12, 102–106.
Neujahr, H. Y. and Kjellen, K. G. (1979) Bioprobe electrode for phenol. Biotechnol Bioeng. 21, 671–678.
Riedel, K., Hensel, J., and Ebert, K. (1991) Biosensoren zur Bestimmung von Phenol und Benzoat auf der Basis von Rhodo-coccus-Zellen und Enzymextrakten (in German). Zbl Bakt 146, 425–434.
Riedel, K., Beyersdorf-Radeck, B., Neumann, B., and Scheller, F. (1995) Microbial sensors for determination of aromatics and their chloroderivates. Part III: Determination of chlorinated phenols using a biosensors containing Trichossporon beigelii(cutaneum). Appl. Microbiol. Biotechnol. 43, 7–9.
Riedel, K., Hensel, J., Rothe, S., Neumann, B., and Scheller, F. (1993) Microbial sensors for determination of aromatics and their chloroderivates. Part II: Determination of chlorinated phenols using a Rhodococcus containing biosensors. Appl. Microbial. Biotechnol. 38, 556–559.
Riedel, K., Naumov, A. V., Boronin, L. A, Golovleva, L. A., Stein, J, and Scheller, F. (1991) Microbial sensors for determination of aromatics and their chloroderivates. Part I: Determination of 3-chlorobenzoate using a Pseudomonas containing biosensors. Appl. Microbial Biotechnol 35, 557–562.
Beyersdorf-Radek, B., Riedel, K., Neumann, B., Scheller, F., Schmid, R. D. (1991) Development of microbial sensors for determination of xenobiotics GBF Monographs 17, 55–60.
Beyersdorf-Radek, B., Schmid, R. D., Riedel, K., Neumann, B., and Scheller, F. (1991) Microbial sensors for the determination of aromatics and their chloroderivates. Proc Symp Environm Biotechnol Oostende 66th Event of the European Federation of Biotechnology (Verachtert, H. and Verstraete, W F., eds.), 65–68.
Tan, H.-M., Cheong, S.-P., and Tan, T.-C. (1994) An amperometric benzene sensor using whole cell Pseudomonas putida ML2. Biosens Bioelectron 9, 1–8.
König, A., Zaborosch, C, Muscat, A., Vorlop, K. D., and Spener, F. (1996) Microbial sensors for naphthaline using Spingomonas sp. Bl or Pseudomonas fluorescens WW4. Appl. Microbiol. Biotechnol 45, 844–850
Riedel, K., Naumov, A. V., Grishenkov, V. G., Boronin, A. M., Stein, J, Scheller, F., and Müller, H.-G. (1989) Plasmid-containing microbial sensors for caprolactam. Appl. Microbiol. Biotechnol. 31, 502–504.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Humana Press Inc.
About this protocol
Cite this protocol
Riedel, K. (1998). Microbial biosensors based on oxygen electrodes. In: Mulchandani, A., Rogers, K.R. (eds) Enzyme and Microbial Biosensors. Methods in Biotechnology, vol 6. Humana Press. https://doi.org/10.1385/0-89603-410-0:199
Download citation
DOI: https://doi.org/10.1385/0-89603-410-0:199
Publisher Name: Humana Press
Print ISBN: 978-0-89603-410-5
Online ISBN: 978-1-59259-484-9
eBook Packages: Springer Protocols