Skip to main content

Inverse Polymerase Chain Reaction

  • Protocol
Book cover Basic DNA and RNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 58))

Abstract

The inverse polymerase chain reaction (IPCR) was the first extension of the conventional polymerase chain reaction to allow the amplification of unknown nucleotide sequences without recourse to conventional cloning. In the conventional polymerase chain reaction (PCR), synthetic oligonucleotides complementary to the ends of a known sequence are used to amplify the sequence (1,2). The primers are oriented with their 3′ ends facing each other, and the elongation of one primer creates a template for annealing the other primer. Repeated rounds of primer annealing, polymerization, and denaturation result in a geometric increase in the number of copies of the target sequence. However, regions outside the boundaries of the known sequence are inaccessible to direct amplification by PCR. Since DNA synthesis oriented toward a flanking region is not complemented by synthesis from the other direction, there is at most a linear increase in the number of copies of the flanking sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saiki, R. K., Scharf, S. J., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., et al. (1985) Enzymatic amplification of P-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.

    Article  PubMed  CAS  Google Scholar 

  2. Saiki, R K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R. G., Horn, G. T., et al. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.

    Article  PubMed  CAS  Google Scholar 

  3. Burke, D. T., Carle, G. F., and Olson, M. V. (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806–812.

    Article  PubMed  CAS  Google Scholar 

  4. Hieter, P., Connelly, C., Shero, J., McCormick, M. K., Antonarakis, S., Pavav, W., et al. (1990) Yeast artificial chromosomes promises kept and pending, in Genetic and Physical Mapping, vol. 1 (Davies, K. E. and Tilghman, S. M., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 83–120.

    Google Scholar 

  5. Sternberg, N. (1990) Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs, Proc. Natl. Acad. Sci. USA 87, 103–107.

    Article  PubMed  CAS  Google Scholar 

  6. Pierce, J. C. and Sternberg, N. L. (1993) Using the bacteriophage PI system to clone high molecular weight (HMW) genomic DNA. Meth. Enzymol. (in press).

    Google Scholar 

  7. Ochman, H., Gerber, A. S., and Hartl, D. L. (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623.

    PubMed  CAS  Google Scholar 

  8. Triglia, T., Peterson, M. G., and Kemp, D. J. (1988) A procedure for in vitro amplification of DNA segments that he outside the boundaries of known sequences. Nucleic Acids Res. 16, 8186.

    Article  PubMed  CAS  Google Scholar 

  9. Silver, J. and Keerikatte, V. (1989) Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J. Virol. 63, 1924–1928.

    PubMed  CAS  Google Scholar 

  10. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

  11. Garza, D., Ajioka, J. W., Carulli, J. P., Jones, R. W., Johnson, D. H., and Hartl, D. L. (1989) Physical mapping of complex genomes. Nature 340, 577,578.

    Article  Google Scholar 

  12. Gchman, H., Medhom, M. M., Garza, D., and Hartl, D. L. (1990) Amplification of flanking sequences by IPCR, in PCR Protocols: A Guide to Methods and Applications (Innis, M., Gelfand, D., Sninsky, J., and White, T., eds.), Academic, New York, pp. 219–227.

    Google Scholar 

  13. Silverman, G. A., Ye, R. D., Pollack, K. M., Sadler, J. E., and Korsmeyer, S. J. (1989) Use of yeast artificial chromosome clones for mapping and walking within human chromosome segment 18q21.3. Proc. Natl. Acad. Sci. USA 86, 7485–7489.

    Article  PubMed  CAS  Google Scholar 

  14. Silverman, G. A., Jockel, J. I., Domer, P. H., Mohr, R. M., Taillon-Miller, P., and Korsmeyer, S. J. (1991) Yeast artificial chromosome cloning of a two-megabasesize contig within chromosomal band 18q21 establishes physical linkage between BCL2 and plasminogen activator inhibitor type-2. Genomics 9, 219–228.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, S., Hu, Y., Wu, C., and Holcenberg, J. (1990) A simple method for direct cloning cDNA sequence that flanks a region of known sequence from total RAN by applying the inverse polymerase chain reaction. Nucleic Acids Res. 18, 1922.

    Article  PubMed  CAS  Google Scholar 

  16. Breukel, C., Wijnen, J., Tops, C., Klift, H. V., Dauwerse, H., and Meera Khan, P. (1990) Vector-Alu PCR: a rapid step in mapping cosmids and YACs. Nucleic Acids Res. 18, 3097.

    Article  PubMed  CAS  Google Scholar 

  17. Ochman, H., Ayala, F. J., and Hartl, D. L. (1993) Use of the polymerase chain reaction to amplify segments outside the boundaries of known sequences. Meth. Enzymol. 218, 309–321.

    Article  PubMed  CAS  Google Scholar 

  18. Pfeifer, G. P., Steigerwald, S. D., Mueller, P. R., Wold, B., and Riggs, A. D. (1989) Genomic sequencing and methylation analysis by ligation mediated PCR. Science 246, 810–813.

    Article  PubMed  CAS  Google Scholar 

  19. Mueller, P. R. and Wold, B. (1989) In viva footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246, 780–786.

    Article  PubMed  CAS  Google Scholar 

  20. Fors, L., Saavedra, R. A., and Hood, L. (1990) Cloning of the shark PO promoter using a genomic walking technique based on the polymerase chain reaction. Nucleic Acids Res. 18, 2793–2799.

    Article  PubMed  CAS  Google Scholar 

  21. Riley, J., Butler, R., Ogilvie, D., Finniear, R., Jenner, D., Powell, S., et al. (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res. 18, 2887–2890.

    Article  PubMed  CAS  Google Scholar 

  22. Rosenthal, A. and Jones, D. S. C. (1990) Genomic walking and sequencing by oligo-cassette mediated polymerase chain reaction. Nucleic Acids Res. 18, 3095,3096.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hartl, D.L., Ochman, H. (1996). Inverse Polymerase Chain Reaction. In: Harwood, A.J. (eds) Basic DNA and RNA Protocols. Methods in Molecular Biology™, vol 58. Humana Press. https://doi.org/10.1385/0-89603-402-X:293

Download citation

  • DOI: https://doi.org/10.1385/0-89603-402-X:293

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-402-0

  • Online ISBN: 978-1-59259-251-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics