Skip to main content

Measurement of Efflux Rates from Brain to Blood

  • Protocol
Neuropeptide Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 73))

Abstract

The blood-brain barrier (BBB) regulates the exchange of substances between the fluids of the central nervous system (CNS) and the blood (1). As such, the BBB is actively involved in providing nutrition and maintaining the homeostatic environment for the brain and spinal cord. Recently, the BBB has been postulated to be important in communication between the nervous system and the peripheral tissues through its ability to control the exchange of regulatory substances (2,3). Furthermore, the BBB is increasingly being found to play important and active roles in disease states (49).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davson, H. (1967) The blood-brain barrier, in Physiology of the Cerebrospinal Fluid, Churchill, London, pp. 82–103.

    Google Scholar 

  2. Banks, W. A and Kastin, A. J. (1990) Editorial review: Peptide transport systems for opiates across the blood-brain barrier. Am. J. Physiol. 259, E1–E10.

    PubMed  CAS  Google Scholar 

  3. Banks, W. A. and Kastin, A. J. (1993) Physiological consequences of the passage of peptides across the blood-brain barrier. Rev. Neurosci. 4, 365–372.

    PubMed  CAS  Google Scholar 

  4. Banks, W. A. and Kastin, A. J. (1989) Inhibition of the brain to blood transport system for enkephalins and Tyr-MIF-1 in mice addicted or genetically predisposed to drinking ethanol. Alcohol 6, 53–57.

    Article  PubMed  CAS  Google Scholar 

  5. Banks, W. A. and Kastin, A. J. (1988) Review: Interactions between the blood-brain barrier and endogenous peptides emerging clinical implications. Am. J. Med. Sci. 295, 459–465.

    Article  PubMed  CAS  Google Scholar 

  6. Rapoport, S. I. (1976) Pathological alterations of the blood-brain barrier, in Blood-Brain Barrier in Physiology and Medicine, Raven, New York, pp. 129–152.

    Google Scholar 

  7. Knobler, R. L., Marini, J. C., Goldowitz, D., and Lublin, F. D. (1992) Distribution of the blood-brain barrier in heterotopic brain transplants and its relationship to the lesions of EAE. J. Neuropathol. Exp. Neurol. 51, 36–39.

    Article  PubMed  CAS  Google Scholar 

  8. Stitt, J. T. (1990) Passage of immunomodulators across the blood-brain barrier. Yale J. Biol. Med. 63, 121–131.

    PubMed  CAS  Google Scholar 

  9. Cserr, H. F. and Knopf, P. M. (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol. Today 13, 507–512.

    Article  PubMed  CAS  Google Scholar 

  10. Davson, H., Welch, K., and Segal, M. B. (1987) Blood-brain-CSF relations, in The Physiology and Pathophysiology of the Cerebrospinal Fluid, Churchill Livingstone, Edinburgh, pp. 375–451.

    Google Scholar 

  11. Jones, P. M. and Robinson, I. C. A. F. (1982) Differential clearance of neurophysial and neurohypophysial peptides from the cerebrospinal fluid in conscious guinea pigs. Neuroendocrinology 34, 297–302.

    Article  PubMed  CAS  Google Scholar 

  12. Mens, W. B. J. and Van Wimersma Greidanus, T. B. (1983) Penetration of neurohypophysial hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain. Res. 262, 143–149.

    Article  PubMed  CAS  Google Scholar 

  13. Davson, H., Welch, K., and Segal, M. B. (1987) The return of the cerebrospinal fluid to the blood. The drainage mechanism, in The Physiology and Pathophysiology of the Cerebrospinal Fluid, Churchill Livingstone, Edinburgh, pp. 485–521.

    Google Scholar 

  14. Banks, W. A. and Kastin, A. J. (1993) The potential for alcohol to affect the passage of peptide and protein hormones across the blood-brain barrier: a hypothesis for a disturbance in brain-body communication, in NIAAA Research Monograph 23, Alcohol and the Endocrine System (Zakhari, S., ed.), National Institutes of Health; National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, pp 401–411.

    Google Scholar 

  15. Banks, W. A. and Kastin, A. J (1983) Aluminium increases permeability of the blood-brain barrier to labelled DSIP and β-endorphin: possible implications for senile and dialysis dementia. Lancet ii, 1227–1229.

    Article  Google Scholar 

  16. Banks, W. A., Kastin, A. J., and Fasold, M. B. (1988) Differential effect of aluminum on the blood-brain barrier transport of peptides, technetium and albumin, J. Pharmacol. Exp. Ther. 244, 579–585.

    PubMed  CAS  Google Scholar 

  17. Barrera, C. M., Kastin, A. J., Fasold, M. B., and Banks, W. A. (1991) Bidirectional saturable transport of LHRH across the blood-brain barrier. Am. J. Physiol. 261, E312–E318

    PubMed  CAS  Google Scholar 

  18. Banks, W. A., Ortiz, L., Plotkin, S. R., and Kastin, A. J. (1991) Human interleukin (IL) 1α, murine IL-1α and murine IL-1β are transported from blood to brain in the mouse by a shared saturable mechanism. J. Pharmacol Exp. Ther. 259, 988–996.

    PubMed  CAS  Google Scholar 

  19. Banks, W. A., Kastin, A. J., and Ehrensing, C. A. (1993) Endogenous peptide Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1) is transported from the brain to the blood by peptide transport system-1. J. Neurosci. Res. 35, 690–695.

    Article  PubMed  CAS  Google Scholar 

  20. Ferguson, A. V. and Marcus, P. (1988) Area postrema stimulation induced cardiovascular changes in the rat. Am. J. Physiol. 255, R855–R860.

    PubMed  CAS  Google Scholar 

  21. Banks, W. A. and Kastin, A. J. (1985) Peptides and the blood-brain barrier lipophilicity as a predictor of permeabihty. Brain. Res. Bull. 15, 287–292.

    Article  PubMed  CAS  Google Scholar 

  22. Field, K. J. and Lang, C. M. (1988) Hazards of urethane (ethyl carbamate). a review of the literature. Lab. Animals 22, 255–262.

    Article  CAS  Google Scholar 

  23. Wood, E. M (1956) Urethane as a carcinogen. The Progressive Fish-Culturist, 135, 136.

    Google Scholar 

  24. Banks, W. A. and Kastin, A. J. (1989) Quantifying carrier-mediated transport of peptides from the brain to the blood, in Methods in Enzymology, vol. 168 (Conn, P. M., ed.), Academic, San Diego, pp. 652–660.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

Banks, W.A., Fasold, M.B., Kastin, A.J. (1997). Measurement of Efflux Rates from Brain to Blood. In: Irvine, G.B., Williams, C.H. (eds) Neuropeptide Protocols. Methods in Molecular Biology™, vol 73. Humana Press. https://doi.org/10.1385/0-89603-399-6:353

Download citation

  • DOI: https://doi.org/10.1385/0-89603-399-6:353

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-399-3

  • Online ISBN: 978-1-59259-559-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics