Skip to main content

Measurement of Ribosomal Accuracy and Proofreading in E. coli Burst Systems

  • Protocol
Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 77))

Abstract

The programmed Escherichia coli ribosome chooses one tRNA isoacceptor from approx 40 competing aminoacyl-tRNAs (1). If an aminoacyl-tRNA with an anticodon nonmatching to the codon is accepted by the ribosome, an erroneous amino acid may be incorporated in the nascent polypeptide, with a missense error as a result. Missense errors in E. coli vary considerably depending on codons and contexts (2). A global average missense frequency has been estimated to be in the range of 3×10−4 per codon for wild-type ribosomes (36). With this error rate, approx 10% of proteins with an average length of 400 amino acids will contain a single missense error, whereas a ribosome, containing about 10,000 amino acids, will have three amino acid substitutions (7). There are ribosome variants with considerably lower (8) as well as with significantly higher (9) missense error levels than wild-type ribosomes. Bacteria with hyperaccurate as well as with error-prone ribosomes grow slower than otherwise isogenic wild-type cells. This suggests that the error level of wild-type ribosomes has evolved to maximize the bacterial growth rate (7): The maximum corresponds to the “best” compromise between the vices of too high accuracy and too many errors in the cell’s proteins. On one hand hyperaccurate ribosomes have impaired efficiency in their interaction with cognate ternary complexes and aa-tRNAs (10), and this tends to reduce the growth rate. Error-prone ribosomes, on the other, produce proteins (enzymes) containing one or several erroneous amino acids, and this reduces their kinetic efficiency and thereby the growth rate of the bacterial population (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komine, Y., Adachi, T., Inokuchi, H., and Ozeki, H. (1990) Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J. Mol. Biol. 212, 579–598.

    Article  PubMed  CAS  Google Scholar 

  2. Parker, J. (1992) Variations in reading the genetic code, in Transfer RNA in Protein Synthesis (Hatfield, D., Lee, B. J., and Pirtle, R. M., eds.), CRC Press, London, pp. 191–267.

    Google Scholar 

  3. Loftfield, R. B. (1963) The frequency of errors in protein biosynthesis. Biochemistry. J. 89, 82–87.

    CAS  Google Scholar 

  4. Loftfield, R. and Vanderjagt, D. (1972) The frequency of errors in protein synthesis. Biochem. 128, 1353–1356.

    CAS  Google Scholar 

  5. Edelmann, P. and Gallant, J. (1977) Mistranslation in E. coli. Cell 10, 131–137.

    Article  PubMed  CAS  Google Scholar 

  6. Ellis, N. and Gallant, J. (1982) An estimate of the global error frequency in translation. Mol. Gen. Genet. 188, 169–172.

    Article  PubMed  CAS  Google Scholar 

  7. Kurland, C. G., Hughes, D., and Ehrenberg, M. (1996) Limitations of translational accuracy, in Escherichia coli and Salmonella Typhimurium Cellular and Molecular Biology (Neidhardt, F. C., ed.), Am. Soc. Microbial, Washington DC, pp. 979–1004.

    Google Scholar 

  8. Biswas, D. K. and Gorini, L. (1972) The attachment site of streptomycin to the 30S ribosomal subunit. Proc. Natl. Acad. Sci. USA 69, 2141–2144.

    Article  PubMed  CAS  Google Scholar 

  9. Gorini, L., Jacoby, G. A., and Breckenridge, L. (1966) Ribosomal ambiguity. Cold Spring Harbor Symp. Quant. Biol. 31, 657–664.

    PubMed  CAS  Google Scholar 

  10. Kurland, C. G. and Ehrenberg, M. (1987) Growth-optimizing accuracy of gene expression. Ann. Rev. Biophys. Biophys. Chem. 16, 291–317.

    Article  CAS  Google Scholar 

  11. Thompson, R. C. and Stone, P. J. (1977) Proofreading of the codon-anticodon interaction on ribosomes. Proc. Natl. Acad. Sci. USA 74, 198–202.

    Article  PubMed  CAS  Google Scholar 

  12. Thompson, R. C., Dix, D. B., and Eccleston, J. F. (1980) Single turnover kinetic studies of guanosine triphosphate hydrolysis and peptide formation in the elongation factor Tu-dependent binding of aminoacyl-tRNA to Escherichia coli ribosomes. J. Biol. Chem. 255, 11,088–11,090.

    PubMed  CAS  Google Scholar 

  13. Thompson, R. C., Dix, D. B., Gerson, R. B., and Karim, A. M. (1981) A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. J. Biol. Chem. 256, 81–86.

    PubMed  CAS  Google Scholar 

  14. Ruusala, T., Ehrenberg, M., and Kurland, C. G. (1982) Catalytic effects of elongation factor Ts on polypeptide synthesis. EMBO J. 1, 75–78.

    PubMed  CAS  Google Scholar 

  15. Hopfield, J. J. (1974) Kinetic proofreading a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139.

    Article  PubMed  CAS  Google Scholar 

  16. Ninio, J. (1975) Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595.

    Article  PubMed  CAS  Google Scholar 

  17. Ruusala, T., Ehrenberg, M., and Kurland, C. G. (1982) Is there proofreading during polypeptide synthesis? EMBO J. 1, 741–745.

    PubMed  CAS  Google Scholar 

  18. Bilgin, N., Claesens, F., Pahverk, H., and Ehrenberg, M. (1992) Kinetic properties of E coli ribosomes with altered forms of S12. J. Mol. Biol. 224, 1011–1027.

    Article  PubMed  CAS  Google Scholar 

  19. Bilgin, N. and Ehrenberg, M. (1994) Mutations in 23S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J Mol. Biol. 235, 813–824.

    Article  PubMed  CAS  Google Scholar 

  20. Jelenc, P. C. and Kurland, C. G. (1979) Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc. Nat. Acad. Sci. USA 76, 3174–3178.

    Article  PubMed  CAS  Google Scholar 

  21. Ehrenberg, M., Bilgin, N., and Kurland, C. G. (1990) Design and use of a fast and accurate in vitro translation system in Ribosomes and protein synthesis. A practical approach. (Spedding, G., ed.), IRL Press at Oxford University Press, New York, pp. 101–129.

    Google Scholar 

  22. Kurland, C. G. and Ehrenberg, M. (1984) Optimization of translation accuracy. Progr. Nucl. Acid. Res. Mol. Biol. 31, 191–219.

    Article  CAS  Google Scholar 

  23. Chinali, G. and Parmeggiani, A. (1980) The coupling with polypeptide synthesis of the GTPase activity dependent on elongation factor G. J. Biol. Chem. 255, 7455–7459.

    PubMed  CAS  Google Scholar 

  24. Ehrenberg, M., Rojas, A.-M., Weiser, J., and Kurland, C. G. (1990) How many EF-Tu molecules participate in aminoacyl-tRNA binding and peptide bond formation in Escherichia coli translation? J. Mol. Biol. 211, 739–749.

    Article  PubMed  CAS  Google Scholar 

  25. Bilgin, N. and Ehrenberg, M. (1995) Stoichiometry for the elongation factor Tu Aminoacyl-tRNA complex switches with temperature. Biochemistry 34, 715–719.

    Article  PubMed  CAS  Google Scholar 

  26. Gillam, I., Millward, S., Blew, D., von Tigerstrom, M., Wimmer, E., and Tener, G. M. (1967) The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry 6, 3043–3056.

    Article  PubMed  CAS  Google Scholar 

  27. Holmes, W. M., Hurd, R. E., Reid, B. R., Rimerman, R. A., and Hatfield, G. W. (1975) Separation of transfer ribonucleic acid by sepharose chromatography using reverse salt gradients. Proc. Nat. Acad. Sci. USA 72, 1068–1071.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Ehrenberg, M., Bilgin, N. (1998). Measurement of Ribosomal Accuracy and Proofreading in E. coli Burst Systems. In: Martin, R. (eds) Protein Synthesis. Methods in Molecular Biology, vol 77. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-397-X:227

Download citation

  • DOI: https://doi.org/10.1385/0-89603-397-X:227

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-397-9

  • Online ISBN: 978-1-59259-563-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics