Skip to main content

Mechanisms of Resistance

Expression of Coat Protein

  • Protocol
Plant Virology Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 81))

Abstract

The expression of viral coat protein (CP) genes in transgenic plants can lead to different phenotypes of resistance (1). Occasionally, transgenic plants escape infection completely and do not accumulate virus or develop symptoms. In other cases, local and systemic virus accumulation and development of systemic infection proceed at a rate slower than in nontransgenic plants. In transgenic plant lines, the proportion of plants that develop symptoms after inoculation is frequently lower than in control lines. It has also been shown that transgenic plants can become locally infected and accumulate virus in the inoculated leaf, but do not support systemic infection. The different phenotypes of resistance suggest that there is not one common mechanism by which virus infection is affected in transgenic plants, but different steps of virus infection are inhibited in different host-virus combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitchen, J. H. and Beachy, R. N. (1993) Genetically engineered protection against viruses in transgenic plants. Ann. Rev. Microbiol. 47, 739–763.

    Article  CAS  Google Scholar 

  2. Powell-Abel, P., Nelson, R. S., De, B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N. (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.

    Article  Google Scholar 

  3. Bol, J. F., van Vloten-Doting, L., and Jaspars, E. M. J. (1971) A functional equivalence of top component a RNA and coat protein in the initiation of infection by alfalfa mosaic virus. Virology 46, 73–85.

    Article  PubMed  CAS  Google Scholar 

  4. Houwing, C. J. and Jaspars, E. M. J. (1987) In vitro evidence that the coat protein is the programming factor in AlMV-induced RNA synthesis. FEBS Lett. 221, 337–342.

    Article  CAS  Google Scholar 

  5. Atreya, P. L., Atreya, C. D., and Pirone, T. P. (1991) Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. Proc. Natl. Acad. Sci. USA 88, 7887–7891.

    Article  PubMed  CAS  Google Scholar 

  6. Azzam, O., Frazer, J., de la Rosa, D., Beaver, J. S., Ahlquist, P., and Maxwell, D. P. (1994) Whitefly transmission and efficient ssDNA accumulation of bean golden mosaic geminivirus require functional coat protein. Virology 204, 289–296.

    Article  PubMed  CAS  Google Scholar 

  7. Briddon, R. W., Pinner, M. S., Stanley, J., and Markham, P. G. (1990) Geminivirus coat protein replacement alters insect specificity. Virology 177, 85–94.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, B. and Francki, R. I. B. (1990) Cucumovirus transmission by the aphid Myzuz persicae is determined solely by the viral coat protein. J. Gen. Virol. 71, 939–944.

    Article  CAS  Google Scholar 

  9. McLean, M. A., Campbell, R. N., Hamilton, R. I., and Rochon, D. M. (1994) Involvement of the cucumber necrosis virus coat protein in the specificity of fungus transmission by Olpidium bornovanus. Virology 204, 840–842.

    Article  PubMed  CAS  Google Scholar 

  10. Nelson, R. S., mnPowell Abel, P., and Beachy, R. N. (1987) Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus. Virology 158, 126–132.

    Google Scholar 

  11. Nejidat, A. and Beachy, R. N. (1989) Decreased levels of TMV coat protein in transgenic tobacco plants at elevated temperatures reduce resistance toTMV infection. Virology 173, 531–538.

    Article  PubMed  CAS  Google Scholar 

  12. Powell, P. A., Sanders, P. R., Tumer, N., Fraley, R. T., and Beachy, R. N. (1990) Protection against tobacco mosaic virus infection in transgenic tobacco plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175, 124–130.

    Article  PubMed  CAS  Google Scholar 

  13. Carr, J. P., Beachy, R. N., and Klessig, D. F. (1989) Are the PR1 proteins of tobacco involved in genetically engineered resistance to TMV? Virology 169, 470–473.

    Article  PubMed  CAS  Google Scholar 

  14. Nejidat, A. and Beachy, R. N. (1990) Transgenic tobacco plants expressing a coat protein gene of tobacco mosaic virus are resistant to some other tobamoviruses. Mol. Plant-Microbe Interact. 3, 247–251.

    Article  PubMed  CAS  Google Scholar 

  15. Register III, J. C. and Beachy, R. N. (1988) Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166, 524–532.

    Article  PubMed  CAS  Google Scholar 

  16. Reimann-Philipp, U. and Beachy, R. N. (1993) Coat protein-mediated resistance in transgenic tobacco expressing the TMV coat protein from tissue specific promoters. Mol. Plant-Microbe Interact. 6, 323–330.

    Article  PubMed  CAS  Google Scholar 

  17. Register III, J. C. and Beachy, R. N. (1989) Effect of protein aggregation state on coat protein-mediated protection against tobacco mosaic virus using a transient protoplast assay. Virology 173, 656–663.

    Article  PubMed  CAS  Google Scholar 

  18. Clark, W. G., Fitchen, J., Nejidat, A., Deom, C. M., and Beachy, R. N. (1995) Studies of coat protein-mediated resistance to tobacco mosaic virus (TMV). II. Challenge by a mutant with altered virion surface does not overcome resistance conferred by TMV coat protein. J. Gen. Virol. 76, 2613–2617.

    Article  PubMed  CAS  Google Scholar 

  19. Wisniewski, L. A., Powell, P. A., Nelson, R. S., and Beachy, R. N. (1990) Local and systemic spread of tobacco mosaic virus in transgenic tobacco plants. Plant Cell 2, 559–567.

    Article  PubMed  CAS  Google Scholar 

  20. van Dun, C. M. P., Overduin, B., van Vloten-Doting, L., and Bol, J. F. (1988) Transgenic tobacco expressing tobacco streak virus or mutated alfalfa mosaic virus coat protein does not crossprotect against alfalfa mosaic virus infection. Virology 164, 383–389.

    Article  PubMed  Google Scholar 

  21. Tumer, N. E., Kaniewski, W., Haley, L., Gehrke, L., Lodge, J. K., and Sanders, P. (1991) The second amino acid of alfalfa mosaic virus coat protein is critical for coat protein-mediated protection. Proc. Natl. Acad. Sci. USA 88, 2331–2335.

    Article  PubMed  CAS  Google Scholar 

  22. Tumer, N. E., O’Connell, K. M., Nelson, R. S., Sanders, P. R., Beachy, R. N., Fraley, R. T., and Shah, D. M. (1987) Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants. EMBO J. 6, 1181–1188.

    PubMed  CAS  Google Scholar 

  23. Taschner, P. E. M., van Marle, G., Brederode, F. T., Tumer, N. E., and Bol, J. F. (1994) Plants transformed with a mutant alfalfa mosaic virus coat protein gene are resistant to the mutant but not to the wild type virus. Virology 203, 269–276.

    Article  PubMed  CAS  Google Scholar 

  24. van Dun, C. M. P., Bol, J. F., and van Vloten-Doting, L. (1987) Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants. Virology 159, 299–305.

    Article  PubMed  Google Scholar 

  25. Hemenway, C., Fang, R. X., Kaniewski, W. K., Chua, N. H., and Tumer, N. E. (1988) Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 7, 1273–1280.

    PubMed  CAS  Google Scholar 

  26. Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P., and Tumer, N. E. (1990) Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato Virus Y in transgenic Russet Burbank. Biotechnology 8, 127–134.

    Article  PubMed  CAS  Google Scholar 

  27. Lindbo, J. A., Silva-Rosales, L., and Dougherty, W. G. (1993) Pathogen derived resistance to potyviruses: working, but why? Semin. Virol. 4, 357–361.

    Article  Google Scholar 

  28. Okuno, T., Nakayama, M., and Furusawa, I. (1993) Cucumber mosaic virus coat protein-mediated protection. Semin. Virol. 4, 357–361.

    Article  CAS  Google Scholar 

  29. Taliansky, M. E. and Garcia-Arenal, F. (1995) Role of cucumovirus capsid protein in long-distance movement within the infected plant. J. Virol. 69, 916–922.

    PubMed  CAS  Google Scholar 

  30. Ding, B., Haudenshield, J. S., Hull, R. J., Wolf, S., Beachy, R. N., and Lucas, W. J. (1992) Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4, 915–928.

    Article  PubMed  CAS  Google Scholar 

  31. Dodds, J. A., Lee, S. Q., and Tiffany, M. (1985) Cross protection between strains of cucumber mosaic virus: effect of host and type of inoculum on accumulation of virions and double-stranded RNA of the challenge strain. Virology 144, 301–309.

    Article  PubMed  CAS  Google Scholar 

  32. Sherwood, J. L. and Fulton, R. W. (1982) The specific involvement of coat protein in tobacco mosaic virus cross protection. Virology 119, 150–158.

    Article  PubMed  CAS  Google Scholar 

  33. Rezende, J. A. M. and Sherwood, J. L. (1991) Susceptibility of dark green areas to superinfection leads to breakdown of cross protection between strains of tobacco mosaic virus. Phytopathology 81, 1490–1496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc.

About this protocol

Cite this protocol

Reimann-Philipp, U. (1998). Mechanisms of Resistance. In: Foster, G.D., Taylor, S.C. (eds) Plant Virology Protocols. Methods in Molecular Biology™, vol 81. Humana Press. https://doi.org/10.1385/0-89603-385-6:521

Download citation

  • DOI: https://doi.org/10.1385/0-89603-385-6:521

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-385-6

  • Online ISBN: 978-1-59259-566-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics