Skip to main content

Flow Cytometric Detection of Fluorescent Redistributional Dyes for Measurement of Cell Transmembrane Potential

  • Protocol
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 91))

  • 1532 Accesses

Abstract

Eukaryotic cells are electronegative when compared to the surrounding environment. This negative charge is called the transmembrane potential (TMP) and is partly caused by concentration gradients of K+, Na2+, and Cl ions across the cell membrane. For purposes of cell osmolarity and pH balance, Na2+ and Cl ion concentrations are kept lower inside the cell relative to the external environment, whereas K+ ions are maintained at a high intracellular concentration (relative to outside the cell) balancing negative charges on cytoplasmic organic molecules (Fig. 1). These ion gradients are maintained by the relative impermeability of the plasma membrane to charged particles and by membrane-bound, energy-dependent ion pumps. The net negative TMP is generated by a combination of K+ ion loss through leak channels (down the K+ concentration gradient), Na2+ ion loss through the Na2+/K+ ATPase, and negatively charged organic molecules trapped in the cytoplasmic compartments of the cell (1,2).

Forces that regulate and determine membrane potential. Approximate intracellular and extracellular ion concentrations for mammalian cells are represented in boxes. White arrows represent direction and strength of electrochemical gradients for each ion. Negative signs represent charge of the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts, B., et al. (1994) Membrane transport of small molecules and the ionic basis of membrane excitability, in Molecular Biology of the Cell, Garland, New York, pp. 507–549.

    Google Scholar 

  2. Shapiro, H. M. (1988) Optical probes of cell membrane potential, in Practical Flow Cytometry Liss, Inc., New York, pp. 181–189.

    Google Scholar 

  3. GeFland, E. W., Cheung, R. K., Mills, G. B., and Grinstein, S (1987) Role of membrane potential in the response of human T lymphocytes to phytohemagylutanin. Immunology 138, 527–531.

    Google Scholar 

  4. Tsien, R. Y., Pozzan, T., and Rink, T. J., (1982) T cell mitogens cause early change in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295, 68–71.

    Article  CAS  PubMed  Google Scholar 

  5. Galhn, E. K. (1986) Ionic channels in leukocytes J Leuk Biol 39, 241–254

    Google Scholar 

  6. Galhn, E. K. and Livengood, D. R., (1981) Inward rectification in mouse macrophages: evidence for a negative resistance region. Am J. Phys 214, C9–C17

    Google Scholar 

  7. Segilmann, B., Chused, T. M., and Galhn, J. I. (1981) Human neutrophil heterogenetic identified using flow microfluorimetry to monitor membrane potential. J Clin Invest 68, 1125–1131

    Article  Google Scholar 

  8. Oettgen, H. D., Terhorst, C., Cantley, L. C., and Rosoff, P. M. (1985) Stimulation of T3-T cell receptor complex induces a membrane potential sensitive calcium influx. Cell 40, 583–590.

    Article  CAS  PubMed  Google Scholar 

  9. Cohen, L. D. and Salzberg, B. M. (1978) Optical measurement of membrane potential Rev Physiol Biochem Pharmacol 83, 85.

    Google Scholar 

  10. Sims, P. J., Waggoner, A. S., Wang, C. H., et al. (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles Biochemistry 13, 3315–3330

    Article  CAS  PubMed  Google Scholar 

  11. Shapiro, H. M., Natale, D. J., and Kamentsky, L. A. (1980) Estimation of membrane potential of individual lymphocytes by flow cytometry Proc Natl Acad Sci USA 76, 5728–5730.

    Article  Google Scholar 

  12. Johnson, L. V., Walsh, M. L., Bockus, B. J., and Chen, L. B. (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy J. Cell. Biol 88, 526–535.

    Article  CAS  PubMed  Google Scholar 

  13. Wilson, H. A., Sehgmann, B. E., and Chused, T. M. (1985) Voltage sensitive cyanine dye fluorescence signals in lymphocytes: plasma membrane and mitochondrial components J Cell Physiol 125, 57–71

    Google Scholar 

  14. Wilson, H. A. and Chused, T. M. (1985) Lymphocyte membrane potential and Ca2+ sensitive potassium channels described by oxonol dye fluorescence measurements J. Cell Physiol 125, 72–81.

    Article  CAS  PubMed  Google Scholar 

  15. Radosevic, K., Bakker Schut, T. C., Van Graft, M., deGrooth, B., and Greve, M. (1993) A flow cytometric study of the membrane potential of natural killer and K562 cells during the cytotoxic process J Immunol Methods 161, 119–128

    Article  CAS  PubMed  Google Scholar 

  16. Balint, E., Cheng, M., Rupp, B., Grimley, P. M., and Aszalos, A. (1992) Cytoskeletal modulation of plasma membrane events induced by Interferon-α. J Interferon Res 12, 249–255.

    Article  CAS  PubMed  Google Scholar 

  17. Taichman, N. S., Masayasu, I., Lally, E. T., Shattil, S. J., Cunningham, M. E., and Korchak, H. M. (1991) Early changes in cytosolic calcium and membrane potential induced by Actmobacillus actinomycetem-comitans leukotoxin in susceptible and resistant target cells J Immunol 147, 3587–3594.

    CAS  PubMed  Google Scholar 

  18. Tanner, M. K., Wellhausen, S. R., and Klein, J. B. (1993) Flow cytometric analysis of altered mononuclear cell transmembrane potential induced by cyclosporin Cytometry 14, 59–69

    Article  CAS  PubMed  Google Scholar 

  19. Ordenez, J. V. and Wehman, N. M. (1993) Rapid flow cytometric antibiotic susceptibility assay for Staphylococcus aureus Cytometry 14, 811–818.

    Article  Google Scholar 

  20. Hasmann, M., Valet, G. K., Tapiero, H., Trevorrow, K., and Lampidis, T. (1989) Membrane potential differences between adriamycin-sensitive cells and resistant cells by flow cytometry Biochem. Pharm 38, 305–312

    Article  CAS  PubMed  Google Scholar 

  21. Kessel, D., Beck, W. T., Kukuraga, D., and Schulz, V. (1991) Characterization of multidrug resistance by fluorescent dyes. Cancer Res 51, 4665–4670

    CAS  PubMed  Google Scholar 

  22. Waggoner, A. S. (1979) Dye indicators of membrane potential. Ann Rev Biophys. Bioeng 8, 47–68

    Article  CAS  Google Scholar 

  23. Ishida, Y. and Chused, T. M. (1993) Lack of voltage sensitive potassium channels and generation of membrane potential by sodium potassium ATPase in murine T lymphocytes J Immunol. 151, 610–620.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tanner, M.K., Wellhausen, S.R. (1998). Flow Cytometric Detection of Fluorescent Redistributional Dyes for Measurement of Cell Transmembrane Potential. In: Jaroszeski, M.J., Heller, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology™, vol 91. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-354-6:85

Download citation

  • DOI: https://doi.org/10.1385/0-89603-354-6:85

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-354-2

  • Online ISBN: 978-1-59259-214-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics