Skip to main content

Simultaneous Five-Six Color Multiparameter Analysis

  • Protocol
Flow Cytometry Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 91))

  • 1422 Accesses

Abstract

The development of simultaneous multiparameter analysis protocols has facilitated the use of flow cytometry in many diverse and complex research and clinical programs. This effort has been advanced by the availability of a wide range of fluorochrome-conjugated antibody reagents and the use of fluorescent particles and probes that can be employed for the analysis of numerous antigens that define cell type and function in many diverse applications. These include clinical diagnoses and monitoring of disease states (1,2), bone marrow progenitor cell isolation (3), ion flux measurements (4), nucleic acid quantitation (5,6), cell migration (7), metabolic activation (8) and routine phenotyping (9). In addition, technical advances in flow cytometric instrumentation have allowed investigators to perform more complex experiments requiring the acquisition of an increasing number of parameters. Correlation of the multiparametric data obtained from these studies significantly increases the accuracy in identifying and defining selected subpopulations in a hetergeneous cell suspension. On the other hand, multicolor immunofluorescence may also be advantageous when cell numbers are limited. Typically, peripheral blood or lymphoid tissues provide a high cell number with which multiparametric determinations can be obtained easily when stained for two-, three-, four-, or five-color analysis. However, extensive flow cytometric analysis of samples with relatively few cells (i.e., fine needle aspirates, lung lavages) would necessitate simultaneous multiparametric determinations consisting of five- and possibly six-color immunofluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gale, H. B. and Henry, K. (1992) Measuring percent lymphocytes by flow cytometry to calculate absolute lymphocyte subset counts for HIV+ specimens. Cytometry 13, 175–181.

    Article  CAS  PubMed  Google Scholar 

  2. Ichikawa, Y., Shimizu, H., Yoshida, M., and Arimori, S. (1990) Activation of T-cell subsets in the peripheral blood of patients with Sjogren’s syndrome. Multicolor flow cytometric analysis. Arthritis and Rheumatism 33, 1674–1681.

    Article  CAS  PubMed  Google Scholar 

  3. Huang, S. and Terstappen, L. W. (1992) Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature 360, 745–749.

    Article  CAS  PubMed  Google Scholar 

  4. Rabinovitch, P. S., June, C H., Grossman, A., and Ledbetter, J. A. (1986) Heterogeneity among T-cells in intracellular free calcium responses after mitogen stimulation with PHA or anti-CD3. Simultaneous use of INDO-1 and immunofluorescence with flow cytometry. J. Immunol. 137, 952–961.

    CAS  PubMed  Google Scholar 

  5. Traganos, F, Darzynkiewicz, Z, Sharpless, T., and Melamed, M R. (1977) Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system. J. Histochem Cytochem. 25, 46–56.

    Article  CAS  PubMed  Google Scholar 

  6. Pennlme, K. J., Pellerito-Bessette, F., Umland, S. P., Siegel, M. I., and Smith, S. R. (1992) Detection of in vivo-induced IL-1 mRNA in murine cells by flow cytrometry and fluorescent in situ hybridization (FISH). Cytokine Res. 11, 65–71.

    Google Scholar 

  7. Beavis, A. J. and Pennline, K J (1994) Tracking of murine spleen cells in vivo: detection of PKH26-labeled cells in the pancreas of non-obese diabetic (NOD) mice. J. Immunol Methods 170, 57–65.

    Article  CAS  PubMed  Google Scholar 

  8. Bass, D. A., Parce, J. W., DeChatelet, L. R., Szejda, P, Seeds, M C, and Thomas, M. (1993) Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol 130, 1910–1917

    Google Scholar 

  9. Beavis, A J. and Pennline, K J (1994) Simultaneous measurement of five cell surface antigens by five-colour immunofluorescence. Cytometry 15, 371–376

    Article  CAS  PubMed  Google Scholar 

  10. Ernst, L A., Gupta, R. K., Mujumdar, R. B., and Waggoner, A. S. (1989) Cyanine dye labeling reagents for sulfhydryl groups. Cytometry 10, 3–10.

    Article  CAS  PubMed  Google Scholar 

  11. Minta, A., Kao, J P. Y., and Tsien, R. Y. (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J. Biol Chem 264, 8171–8178.

    CAS  PubMed  Google Scholar 

  12. Horan, P. K., Melnicoff, M. J., Jensen, B. D, and Slezak, S. E. (1990) Fluorescent cell labeling for in vivo and in vitro cell tracking, in Methods in Cell Biology, vol 3, Flow Cytometry (Darzynkiewicz, Z, and Crissman, H. A, eds.), Academic, New York, pp. 469–490.

    Google Scholar 

  13. Whitaker, J. E., Haugland, R P., Ryan, D., Hewitt, P C, Haugland, R P, and Prendergast, F. G. (1992) Fluorescent rhodol derivatives: versatile, photostable labels and tracers. Anal. Biochem. 207, 267–279.

    Article  CAS  PubMed  Google Scholar 

  14. Whitaker, J. E., Haugland, R P, Moore, P L., Hewitt, P. C, Reese, M, and Haugland, R. P. (1991) Cascade Blue derivatives: water soluble, reactive, blue emission dyes evaluated as fluorescent labels and tracers. Anal. Biochem. 198, 119–130.

    Article  CAS  PubMed  Google Scholar 

  15. Beavis, A. J. and Pennline, K J. (1996) ALLO-7: a new fluorescent tandem dye for use in flow cytometry. Cytometry 24, 390–394.

    Article  CAS  PubMed  Google Scholar 

  16. Beavis, A. J. and Pennline, K. J. (1996) Detection of cell surface antigens using antibody-conjugated fluorospheres (ACF). application for six-color immunofluorescence. Biotechniques 21, 498–503.

    CAS  PubMed  Google Scholar 

  17. Glazer, A. and Stryer, L. (1983) Fluorescent tandem phycobihprotein conjugates emission wavelength shifting by energy transfer. Biochem J. 43, 383–386.

    CAS  Google Scholar 

  18. Southwick, P. L., Ernst. L. A., Tauriello, E. W., Parker, S. R., Mujumdar, R. B., Mujumdar, S. R., Clever, H A., and Waggoner, A. S. (1990) Cyanine dye labeling reagents-carboxymethyhndocyanine succinimidyl esters. Cytometry 11, 418–430.

    Article  CAS  PubMed  Google Scholar 

  19. Whitaker, J E., Haugland, R. P, Moore, P. L., Hewitt, P. C, Reese, M., and Haugland, R.P. (1991) Cascade Blue derivatives: water soluble, reactive, blue emission dyes evaluated as fluorescent labels and tracers. Anal. Biochem 198, 119–130.

    Article  CAS  PubMed  Google Scholar 

  20. Aubin, J. (1979) Autofluorescence of viable cultured mammalian cells. J. Histochem Cytochem 27, 36.

    Article  CAS  PubMed  Google Scholar 

  21. Benson, H. C, Meyer, R. A., and Zaruba, M. E. (1979) Cellular autofluorescence-Is it due to flavins? J Histochem. Cytochem 27, 44

    Article  CAS  PubMed  Google Scholar 

  22. Paulis, M, Robins, A., and Powell, R (1993) Quantitative analysis of lymphocyte CD11a using standardized flow cytometry. Scand J Immunol 38, 559–564.

    Article  Google Scholar 

  23. Cosio, F. G., Xiao-Ping, S., Birmingham, D. J., Van Aman, M., and Herbert, L. A. (1990) Evaluation of the mechanisms responsible for the reduction in erythrocyte complement receptors when immune complexes form in vivo in primates. J. Immunol. 145, 4198–4206

    CAS  PubMed  Google Scholar 

  24. Technau, U. and Holstein, T W. (1992) Cell sorting during the regeneration of Hydra from reaggregated cells. Developmental Biol 151, 117–127.

    Article  CAS  Google Scholar 

  25. Bender, J. G., Unverzagt, K. L., Maples, P. B., Mehrotra, Y. J., Mellon, Y. J., Van Epps, D. E., and Stewart, C. C. (1992) Functional characterization of mouse granulocytes and macrophages produced in vitro from bone marrow progenitors stimulated with interleukin 3 (IL-3) or granulocyte-macrophage colony stimulating factor (GM-CSF). Exp. Hematol 1135–1140

    Google Scholar 

  26. Blair, O. C, Carbone, R., and Sartorelli, A. C. (1986) Differentiation of HL-60 promyelocytic leukemia cells: simultaneous determination of phagocytic activity and cell cycle distribution by flow cytometry. Cytometry 7, 171–177

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pennline, K.J. (1998). Simultaneous Five-Six Color Multiparameter Analysis. In: Jaroszeski, M.J., Heller, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology™, vol 91. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-354-6:255

Download citation

  • DOI: https://doi.org/10.1385/0-89603-354-6:255

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-354-2

  • Online ISBN: 978-1-59259-214-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics