Skip to main content

PCR from Single Cells for Preimplantation Diagnosis

  • Protocol

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 5))

Abstract

The detection of genetic defects in human embryos following in vitro fertilization (IVF) or preimplantation genetic diagnosis (PGD) allows the selection and transfer of unaffected embryos in couples known to be at risk of transmitting an inherited disorder. This avoids the need to termiate an affected pregnancy, following prenatal diagnosis at later stages (1). Diagnosis of a single gene defect is usually performed on one or two single cells (blastomeres) biopsied from 8- to 10-cell embryos on the 3rd d postinsemination using nested polymerase chain reaction (PCR) to amplify informative fragments. Nested PCR allows amplification from a limited number of target sequences (2), and under carefully optimized conditions, amplification of as few as one or two target copies present in a single haploid or diploid cell is possible (35). PGD was first achieved for X-linked diseases by determining the sex of the embryos using a Y chromosome-specific repetitive sequence and selective transfer of only female embryos (6). More recently, specific diagnosis has been achieved for cystic fibrosis (CF), by amplifying across the cystic fibrosis transmembrane regulator (CFTR) gene †F508 locus (7) and for Lesch-Nyhan syndrome by amplifying across a familial base substitution nullifying a natural XhoI restriction site in the hypoxanthine phophoribosyl transferase (HPRT) gene (8). In both instances, nested PCR strategies were chosen to amplify the mutated sequence allowing sufficient amplification for detection on ethidium bromide-stained gels. The limited cycling with the outer primers (20 cycles) reduces nonspecific amplification, and only specific fragments that contain the complementary sequence to the internal primers are amplified to a detectable level in the second round of PCR. Although extra handling is involved, any genomic contaminant introduced after the first round of amplification would not be amplified to a detectable level by the inner primers alone. The efficiency of the second amplification is improved because the denaturation of the first amplification product (amplicon) is easier. Also, the great excess of these amplicons compared with nonspecific sequences eliminates competition, thereby enhancing specificity and yield.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Handyside, A. H (1993) Diagnosis of inherited disease before implantation Reprod. Med Rev 2, 51–61.

    Google Scholar 

  2. Mullis, K. and Faloona, F. (1987) Specific synthesis of DNA in vitro vta a polymerase-catalysed chain reaction. Methods Enzymol. 155, 335–350.

    Article  PubMed  CAS  Google Scholar 

  3. Li, A., Gyllenstein, U. B., Cut, X., Saiki, R. K., Erhch, H. A, and Arnheim, N. (1988) Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335, 414–419.

    Article  PubMed  CAS  Google Scholar 

  4. Cui, X. F., Li, H. H., Goradia, T. M., Lange, K., Kazaztan, H.H.J, Galas, D., and Amheim, N. (1989) Single-sperm typing: determination of genetic distance between the G gamma-globm and parathyroid hormone loci by using the polymerase chain reaction and allele-specific oligomers. Proc Natl Acad Sci USA 86, 9389–9393.

    Article  PubMed  CAS  Google Scholar 

  5. Coutelle, C., Williams, C., Handyside, A., Hardy, K., Winston, R., and Williamson, R. (1989) Genetic analysis of DNA from single human oocytes a model for preimplantation diagnosis of cystic fibrosis. Br Med. J 299, 22–24.

    Article  CAS  Google Scholar 

  6. Handyside, A. H., Kontogianni, E. H., Hardy, K, and Winston, R. M. (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344, 768–770.

    Article  PubMed  CAS  Google Scholar 

  7. Handyside, A. H., Lesko, J. G., Tarin, J. J., Winston, R. M., and Hughes, M. R. (1992) Birth of a normal girl after in vitro fertilization and preimplantatron diagnostic testing for cystic fibrosis. N Engl J. Med. 327, 905–909.

    Article  PubMed  CAS  Google Scholar 

  8. Ray, P F, Winston, R M. L, and Handyside, A. H. (1994) Single cell analysis for diagnosis of cystic fibrosis and Lesch-Nyhan syndrome in human embryos before implantation. Miami Bio/Technol 5, 46 (abstract).

    Google Scholar 

  9. Ao, A., Ray, P., Lesko, J., Harper, J. C., Handyside, A. H., Hughes, M. R., and Winston, R. M. L (1996) Clinical experience with preimplantation diagnosis of the †F508 deletion causing cystic fibrosis. Prenat Diagn (in press).

    Google Scholar 

  10. Lesko, J., Snabes, M., Handyside, A. H., and Hughes, M. (1991) Amphficatton of the cystic fibrosis DF508 mutation from single cells: applmations toward genetic diagnosis of the preimplantation embryo. Am. J. Hum. Genet. 49(4), 223 (abstract).

    Google Scholar 

  11. Ray, P. F. (1996) Increasing the denaturation temperature during the first cycles of nested amplification reduces allele dropout from single cells for preimplantation genetic diagnosis. Mol. Hum. Reprod (in press).

    Google Scholar 

  12. Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidt, W., and Amheim, N. (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl. Acad Sci USA 89, 5847–5851.

    Article  PubMed  CAS  Google Scholar 

  13. Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985) Hypervariable “mimsatellite” regions in human DNA. Nature 314, 67–73.

    Article  PubMed  CAS  Google Scholar 

  14. Nakamura, Y., Leppert, M., O’Connell, P., Wolff, R., Holm, T., Culver, M., et al. (1987) Vanable number of tandem repeat (VNTR) markers for human gene mapping. Science 235, 1616–1622.

    Article  PubMed  CAS  Google Scholar 

  15. Ray, P. F., Harper, J., Mountford, R., Elles, R., and Handyside, A. H. (1992) Analysis of simple tandem repeats following whole genome amplification from single cells for preimplantation diagnosis of Duchenne muscular dystrophy. J Reprod Fert. Abstr. Series No. 10, 52.

    Google Scholar 

  16. Knstjansson, K., Chong, S. S., Van den Veyver, I. B., Subramanian, S., Snabes, M. C., and Hughes, M. R (1994) Prelmplantation single cell analyses of dystrophin gene deletions using whole genome amphfication. Nature Genet 6, 19–23.

    Article  Google Scholar 

  17. Fmdlay, I., Ray, P., Qmrque, P., Rutherford, A., and Lilford, R. (1995) Allelic drop-out and preferential amplification in single cells and human blastomeres: implications for preimplantation diagnosis of sex and cystic fibrosis. Hum. Reprod 10, 1609–1618.

    Google Scholar 

  18. Findlay, I., Urquart, A., Quirque, P., Sullivan, K. M., Rutherford, A, and Lilford, R. (1995) Simultaneous DNA “fingerprinting”, diagnosis of sex and single-gene defect status from a single cell. Hum Reprod 10, 1005–1013.

    PubMed  CAS  Google Scholar 

  19. Harper, J. C. (1996) Preimplantation diagnosis of inherited disease. An update of world figures. J Assoc Reprod Genet (in press).

    Google Scholar 

  20. Li, H., Cui, X., and Amheim, N. (1991) A Companton to Methods in Enzymology, Academic, New York.

    Google Scholar 

  21. Nakahon, Y., Hamanao, K., Iwaya, M., and Nakagome, Y. (1991) Sex identification by polymerase chain reaction using X-Y homologous primer. Am J Med Genet 39, 472,473.

    Article  Google Scholar 

  22. Handyside, A. H., Pattinson, J. K., Penketh, R. J., Delhanty, J. D., Winston, R. M., and Tuddenham, E. G. (1989) Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet 1, 347–349.

    Article  PubMed  CAS  Google Scholar 

  23. Delhanty, J. D. A., Griffin, D. K., Handyside, A. H., Harper, J., Atkinson, G. H. G., Pieters, M. H. E. C., and Winston, R. M. L. (1993) Detection of aneuploidy and chromosomal mosaicism in human embryos during preimplantation sex determination by fluorescent in situ hybridization (FISH). Hum Mol. Genet 2(8), 1183–1185.

    Article  PubMed  CAS  Google Scholar 

  24. Chong, S. S., Kristjansson, K., Cota, J., Handyside, A. H., and Hughes, M. R. (1993) Prelmplantation diagnosis of X-linked disease: reliable and rapid sex determination of single human cells by restriction site analysis of simultaneously amphfied ZFX and ZFY sequences. Hum Mol. Genet 8, 1187–1191.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ray, P.F., Handyside, A.H. (1996). PCR from Single Cells for Preimplantation Diagnosis. In: Elles, R. (eds) Molecular Diagnosis of Genetic Diseases. Methods in Molecular Medicine™, vol 5. Humana Press. https://doi.org/10.1385/0-89603-346-5:245

Download citation

  • DOI: https://doi.org/10.1385/0-89603-346-5:245

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-346-7

  • Online ISBN: 978-1-59259-589-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics