Skip to main content

The Use of Databases in Searching the Literature of Biological Mass Spectrometry

  • Protocol
Book cover Protein and Peptide Analysis by Mass Spectrometry

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 61))

  • 906 Accesses

Abstract

Now that mass spectrometric techniques can be applied to a much wider range of molecules, the problem of searching the literature in order to find out whether or not the mass spectrum of a particular analyte has been reported has increased significantly. For example, many reports of mass spectral data now may be found in journals with which the mass spectrometrist is almost certainly unfamiliar. In this connection, it might be thought that the ready availability of a number of computerized bibliographic databases would mean that this problem can easily be solved by using the most appropriate database. The purpose of the present chapter is to show, by means of a detailed consideration of the reporting of a key biochemical analyte, human hemoglobin, that this is not the case, since a number of key references are overlooked. The reasons for this finding, which confirm previous Salford studies on the efficiency of literature databases for small molecules (1,2), are first that none of the databases cover 100% of the scientific literature and, second, no system is 100% efficient in its abstracting of experimental measurements published in scientific papers. The reason for the choice of human hemoglobin to illustrate this data searching problem is that one of us had conducted joint research with the late Professor M. Barber on the measurement of the mass spectra of intact globins using fast-atom bombardment-mass spectrometry techniques (3), and this research interest is still maintained by the first author (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brooks, C. T. (1980) Computer Production and Analysis of a Fully Indexed Bibliographic Database on Oestrogen Methodologies. PhD. Thesis, University of Salford, UK.

    Google Scholar 

  2. Blunden-Ellis, J. C. P. (1984) Bibliographic Analysis of the Literature of the HPLC Methods for Separating PTH-Amino Acids. MSc Thesis, University of Salford, UK.

    Google Scholar 

  3. Barber, M., Bell, D., Morris, M., Tetler, L. W., Woods, D., Gordon, D. B., Garner, G. V., Airey, C. J., Croft, L. R., and Oliver, R. W. A. (1988) Mass Spectral Analysis of Aberrant Haemoglobins. 11th International MS conference, Bordeaux, France, September.

    Google Scholar 

  4. Green, B. N., Quaife, R., Hassounah, F. H., and Oliver R. W. A. (1996) On the combined use of mass spectrometric and genetic analytical techniques to Identify hemoglobm variants. Hemoglobin, in press.

    Google Scholar 

Appendix

  1. Bookchin, R. M. and Gallop, P. M. (1968) Structure of hemoglobin A,,-nature of the N-terminal P-chain blocking group. Biochem. Biophys. Res. Commun. 32, 86–93. xxx

    PubMed  CAS  Google Scholar 

  2. Morris, H. R. and Willlams, D. H. (1972) The identification of a mutant peptide of an abnormal haemoglobin by mass spectrometry. J. Chem. Soc. Chem. Commun. 114–116. XXX.

    Google Scholar 

  3. Wada, Y., Fugita, T., Hayashi, A., Matsuo, T., Katakuse, I, and Matsuda, H. (1980) I. Structural analysis of human hemoglobin variants by field desorption mass spectrometry. Iyo Masu Kenkyukai Koenshu 5, 135–140 (Japanese) XCX.

    CAS  Google Scholar 

  4. Matsuo, T., Matsuda, H., Katakuse, I., Wada, Y., Fujita, T., and Hayashi., A. (1981) Field desorption mass spectra of tryptic peptides of human hemoglobin chains. Biomed. Mass Spectrom. 8, 25–30. BCX.

    CAS  Google Scholar 

  5. Wada, Y., Hayashi, A., Fujita, T., Matsuo, T., Katakuse, I., and Matsuda, M. (1981) Structural analysis of human hemoglobin variants with field desorption mass spectrometry. Biochim. Biophys. Acta. 667, 233–241. BCM.

    PubMed  CAS  Google Scholar 

  6. Aschauer, H., Schafer, W., Sanguansermsri, T., and Braunitzer, G. (1981) Human embryonic haemoglobins. Ac-Ser-Leu-Thr-is the N-terminal sequence of the zeta-chains. Hoppe Seyler’s Z Physiol. Chem. 362, 1657–1659. XCM.

    PubMed  CAS  Google Scholar 

  7. Matsuo, T., Katakuse, I., Matsuda, H., Wada, Y., Fujita, T., and Hayashi, A. (1981) II. Field desorption mass spectra of peptide mixture of human globin digested by thermolysin and staphyloccal protease. Iyo Masu Kenkyukai Koenshu 6, 107–110. (Japanese) XCX.

    CAS  Google Scholar 

  8. Wada, Y., Hayashi, A., Matsuo, T., Sakurat, T., Matsuda, H., and Higuchi, T. (1982) Structural analysis of human hemoglobin variants by mass spectrometry III. Comparison of FD and FAB mass spectra and identification of homozygosity for T-gamma globin by mass spectrometry. Iyo Masu Kenkyukai Koenshu 7, 123–126. (Japanese) XCX.

    CAS  Google Scholar 

  9. Wada, Y., Hayashi, A., Matsuo, T., Sakurai, T., Matsuda, H., and Katakuse, I. (1983) Structural analysis of human hemoglobin variants by mass spectrometry IV. Characterisation of two new hemoglobin variants by FDMS and molecular SIMS. Iyo Masu Kenkyukai Koenshu 8, 209–212. (Japanese) XCX.

    CAS  Google Scholar 

  10. Wada, Y., Hayashi, A., Fujita, T., Matsuo, T., Katakuse, I., and Matsuda, H. (1983) Structural analysis of human hemoglobin variants by mass spectrometry. Int. J. Mass Spectrom. Ion. Phys. 48, 209–212. BCX.

    CAS  Google Scholar 

  11. Wada, Y., Hayashi, A., Masanori, F., Katakuse, I., Ichihara, T., Nakabushi, H., Matsuo, T., Sakurai, T., and Matsuda, H. (1983) Characterisation of a new fetal haemoglobin variant, Hb F Izumi (6) Glu → Gly, by molecular secondary ion mass spectrometry. Biochim. Brophys. Acta. 749, 244–248. XCM.

    CAS  Google Scholar 

  12. Katakuse, I., Ichihara, T., Nakabushi, H., Matsuo, T., Matsuda, H., Wada, Y., and Hayashi, A. (1984) Secondary ion mass spectra of tryptic peptides of human hemoglobin chains. Biomed. Mass Spectrom. 11, 386–391. BXM.

    PubMed  CAS  Google Scholar 

  13. Puccl, P., Carestia, C., Fioretti, G., Mastrobuoni, A. M., and Pagano, L. (1985) Protein finger printing by FAB. Characterisation of normal and variant human haemoglobms. Biochem. Biophys. Res. Commun. 130, 84–90. XCM.

    Google Scholar 

  14. Wada, Y., Hayashi, A., Matsuo, T., Matsuda, H., and Katakuse, I. (1985) Structural analysis of human hemoglobin variants by mass spectrometry. V Characterisation of a foetal hemoglobin variant in the extract from dried blood on filter paper. Iyo Masu Kenkyukai Koenshu 10, 87–90 (Japanese) XCX.

    CAS  Google Scholar 

  15. Fujita, S., Ohta, Y., Saito, S., Kobayashi, Y., Naritomi, Y., Kawaguchi, K., Imamura, T., Wada, Y., and Hayashi, A. (1985) Hemoglobin A2 Honai α282(90) Glu → Val: a new delta chain variant. Hemoglobin. 9(6), 597–607. XXX.

    PubMed  CAS  Google Scholar 

  16. Wada, Y., Hayashi, A., Katakuse, I., Matsuo, T., and Matsuda, H. (1985) Application of glycinamidation to the peptide mapping using secondary ion mass spectrometry. Biomed. Mass Spectrom. 12, 122–126. XXX.

    CAS  Google Scholar 

  17. Rahbar, S., Louis, J., Lee, T., and Asmerom, Y. (1985) Hemoglobin North Chicago, β(36) Pro → Ser: A new high affinity hemoglobin. Hemoglobin 9, 559–576. XXM.

    PubMed  CAS  Google Scholar 

  18. Boissel, J-P., Kasper, T. J., Shah, S. C., Malone, J. I., and Bunn, H. F. (1986) Amino-terminal processing of proteins. Hemoglobin South Florida Proc. Natl. Acad. Sci. USA 82, 8448–8452. XXM.

    Google Scholar 

  19. Wada, Y., Fujita, T., Kidoguchi, K., and Hayashi, A. (1986) Foetal haemoglobin variants in 80,000 Japanese neonates: high prevalence of Hb F Yamaguchi AγT(so) Asp → Asn. Hum. Genet. 72, 196–202. XXX.

    PubMed  CAS  Google Scholar 

  20. Rahbar, S., Lee, T. D., Baker, J. A., Rabinowitz, L. T., Asmerom, Y., Legesse, K., and Ranney, H. M. (1986) Reverse phase HPLC and SIMS: A strategy for identification of ten human hemoglobin variants. Hemoglobin 10, 379–400. BCM.

    PubMed  CAS  Google Scholar 

  21. Blouquit, Y., Rhoda, M. D., Delanoe-Garin, J., Rosa, R., Prome, J. C., Poyart, C., Puzo, G., Bernassaus, J. M., and Rosa, J. (1986) Glycerated hemoglobin α2β2(82)N-ε-glyceryllysine. a new post-translational modification occurring in erythrocyte bisphosphoglyceromutase deficiency. J. Biol. Chem. 261, 6758–6764. XCX.

    PubMed  CAS  Google Scholar 

  22. Matsuo, T., Sakurai, T., Katakuse, I., Matsuda. H., Wada, Y., and Hayashi, A. (1986) Amino acid sequencing of peptide mixtures. structural analysis of human hemoglobin variants (Digit Printing Method). Springer Proc. Phys. 9, 113–117. XCX.

    CAS  Google Scholar 

  23. Castagnola, M., Landolfi, R., Rossetti, D., DeAngelis, F., and Ceccarelli, S. (1986) Determination of abnormal hemoglobins by the combined use of reversed phase high performance liquid chromatography and fast atom bombardment mass spectrometry. Anal. Lett. 19, 1793–1807. XCX.

    CAS  Google Scholar 

  24. Wada, Y. (1986) Structural analysis of variant protein by mass spectrometry. Iyo Masu Kenkyukai Koenshu 11, 55–60. (Japanese) XXX.

    CAS  Google Scholar 

  25. Hidaka, K. and Iuchi, I. (1986) Hemoglobin J-Norfolk found in the Kobe District. Kawasaki Med. J. 12, 97–99. (Japanese) XCX.

    CAS  Google Scholar 

  26. Hayashi, A., Wada, Y., Matsuo, T., Katakuse, L., and Matsuda, H. (1987) Neonatal screening and mass spectrometric analysis of hemoglobin variants in Japan. Acta. Haematol. 78, 114–118. XXM.

    PubMed  CAS  Google Scholar 

  27. Wada, Y., Ikkala, E., Imat, K., Matsuo, T., Matsuda, H., Lehtinen, M., Hayashi, A., and Lehmann, H. (1987) Structure and function of a new hemoglobin variant Hb: Meilahti α2β2(36)Pro → Thr, characterised by mass spectrometry. Acta. Haematol. 78, 109–113. XCM.

    PubMed  CAS  Google Scholar 

  28. Prome, D., Prome, J. C., Blouquit, Y., Lacombe, C., Rosa, J., and Robinson, J. D. (1987) FAB mapping of proteins: detection of mutation sites in abnormal human hemoglobins. Spectros. Int. J. 5, 157–170. XCX.

    CAS  Google Scholar 

  29. Wada, Y. and Hayashi, A. (1987) Structural analysis of hemoglobin by mass spectrometry: a review. Tanpakushitsu Kakusan Koso 32, 697–703. (Japanese) XXM.

    PubMed  CAS  Google Scholar 

  30. Blouquit, Y., Rhoda, M. D., Delanoe-Garin, J., Rosa, R., Prome, J. C., Poyart, C., Puzo, G., Bernassaus, J. M., and Rosa, J. (1987) Glycerated hemoglobin α2β2(82) N-ε-glyceryllysine: a new post-translational modification occuring in erythrocyte bisphosphoglyceromutase deficiency. Biomed. Biochim. Acta. 46, S202–S206. XXX.

    PubMed  CAS  Google Scholar 

  31. Castognola, M., Dobasz, M., Landolfi, R., Pascali, V. L., deAngelis, F., Vettore, L., and Perona, G. (1988) Determination of neutral haemoglobin variants by immobilized pH gradient, reversed-phase high-performance liquid chromatography and fast-atom bombardment mass spectrometry—the case of Hb Torino α(43)Phe → Val. Biol. Chem. Hoppe. Seyler. 369, 241–246. XXM.

    Google Scholar 

  32. DeBiasi, R., Spiteri, D., Caldora, M., Iodice, R., Pucci, P., Malorni, A., Ferranti, P., and Marino, G. (1988) Identification by fast atom bombardment mass spectrometry of Hb Indianapolis β(112)Cys → Arg in a family from Naples, Italy. Hemoglobin 12, 323–336. XXM.

    CAS  Google Scholar 

  33. Keitt, A. S. and Jones, R. T. (1988) The variant fetal hemoglobin F Texas I is abnormally acetylated. Am. J. Hematol. 28, 47–52. XCM.

    PubMed  CAS  Google Scholar 

  34. Prome, D., Prome, J. C., Pratbernou, F., Blouquit, Y., Galacteros, F., Lacombe, C., Rosa, J., and Robinson, J. D. (1988) Identification of some abnormal haemoglobins by fast atom bombardment mass spectrometry and fast atom bombardment tandem mass spectrometry. Biomed. Environ. Mass Spectrom. 16, 41–44. XCM.

    PubMed  CAS  Google Scholar 

  35. Wada, Y., Hayashi, A., Matsuo, T., and Sakurai, T. (1988) Analysis of protein variants by high performance mass spectrometer. Iyo Masu Kenkyukai Koenshu 13, 187–190. (Japanese) XCX.

    CAS  Google Scholar 

  36. Rahbar, S., Rosen, R., Nozari, G., Lee, T. D., Asmeron, Y., and Wallace, R. B. (1988) Hemoglobin Pasadena. Am. J. Hematol. 27, 204–208. XCM.

    PubMed  CAS  Google Scholar 

  37. Pucci, P., Ferranti, P., Marino, G., and Malorni, A. (1989) Characterisation of abnormal human haemoglobins by fast atom bombardment mass spectrometry. Biomed. Environ. Mass Spectrom. 18, 20–26. XCM.

    PubMed  CAS  Google Scholar 

  38. Molchanova, T. P., Mirgorodskaya, O. A., Abaturov, L. V., Podtelezhnikov, A. V., Yu, Tokarev, N., and Grachev, S. A. (1989) Location of amino acid substitutions in human hemoglobin. Mass spectrometric rapid analysis of tryptic peptides. Mol. Biol. (USSR) 23, 225–239 (Russian) XCM.

    CAS  Google Scholar 

  39. Wada, Y., Hayashi, A., Oka, Y., Matsuo, T., Sakurai, T., Matsuda, H., and Katakuse, I. (1989) Mass spectrometric characterisation of a haemoglobin variant, haemoglobin Riyadh. Int. J. Mass Spectrom. Ion. Proc. 91, 79–84. XCX.

    CAS  Google Scholar 

  40. Liu, S., Ren, B., He, W., Wen, H., and Weng, Q. (1989) New methods for determining amino acid sequences: FAB-mass spectroscopy. Shengwu Huaxue Zazhi 5, 97–101 (Chinese) XXX.

    CAS  Google Scholar 

  41. Wada, Y., Fujita, T., Hayashi, A., Sakurai, T, and Matsuo, T. (1989) Structural analysis of protein variants by mass spectrometry. Characterisation of haemoglobin Providence using a grand-scale mass spectrometer. Biomed. Environ. Mass Spectrom. 18, 563–565. XXM.

    PubMed  CAS  Google Scholar 

  42. Wada, Y., Matsuo, T., and Sakurai, T. (1989) Structure elucidation of hemoglobin variants and other proteins by digit-printing method. Mass Spectrometry Rev. 8, 379–434. XXX.

    CAS  Google Scholar 

  43. Stachowiak, K. and Dyckes, D. F. (1989) Peptide mapping using thermospray LC/MS detection. rapid identification of hemoglobin variants. Pept. Res. 2, 267–274. XXM.

    PubMed  CAS  Google Scholar 

  44. Pucci, D., Marino, G., Ferranti, P., and Malorni, A. (1989) Identification by FAB-MS of hemoglobin Indianapolis in a family from Naples. Adv. Mass Spectrom. 11, 1428,1429 XXX.

    Google Scholar 

  45. Malomi, A., Pucci, P., Ferranti, P., and Marino, G. (1989) Mass spectrometric analysis of human hemoglobin variants. Chim. Oggi. 7, 57–60. XCX.

    Google Scholar 

  46. Pucci, P., Ferranti, P., Malorni, A., and Marino, G. (1989) Spettrometria di massa FAB nello studio delle emoglobinopatie. G. Ital. Chim. Clin. 14, 115–121. (Italian) XCX.

    CAS  Google Scholar 

  47. Foldi, J., Horanyi, M., Szelenyi, J. G., Hollan, S. R., Aseeva, E. A., Lutsenko, I. N., Spivak, V. A., Toth, O., and Rozynov, B. V. (1989) Hemoglobin Siriraj found in the Hungarian population. Hemoglobin 13, 177–180. XXX.

    PubMed  CAS  Google Scholar 

  48. Ferranti, P. (1989) Caratterizzazione di varianti genetiche dell’emoglobina umana mediante spettrometria di massa FAB. Chim. Ind. 71, Pt 1–2 (ParteI) 89,90 (Milan) and Pt 7–8 (Parte II), 221–231 (Italian) BXX.

    Google Scholar 

  49. Lacombe, C., Prome, D., Blonquit, Y., Bardakdjian, J., Arous, N., Mrad, A., Prome, J-C., and Rosa, J. (1990) New results of hemoglobin variants structure determination by FAB-mass spectrometry. Hemoglobin 14, 529–548. BXM.

    PubMed  CAS  Google Scholar 

  50. Green, B. N., Oliver, R. W. A., Falick, A. M., Shackleton, C. H. L., Roitman, F., and Witkowska, H. E. (1990) Electrospray MS, LSIMS for the rapid detection and characterisation of variant haemoglobins, in Biological Mass Spectrometry (Burlingame, A. L. and McCloskey, J. A., eds.), Elsevier, Amsterdam, pp. 129–146. XXX.

    Google Scholar 

  51. Hillenkamp, F., Karas, M., Ingendoh A., and Stahl, B. (1990) Matrix assisted UV-laser desorptton/ionization: A new approach to mass spectrometry of large biomolecules, in Biological Mass Spectrometry (Burlingame, A. L. and McCloskey, J. A., eds.), Elsevier, Amsterdam, pp. 49–60. XXX.

    Google Scholar 

  52. Pucci, P., Ferranti, P., Malorni, A., and Marino, G. (1990) FAB-MS analysis of haemoglobin variants’ use of V-8 protease in the identification of HbM Hyde Park and Hb San Jose. Biomed Environ. Mass Spectrom. 19, 568–572. XCM.

    PubMed  CAS  Google Scholar 

  53. Falick, A. M., Shackleton, C. H. L., Green, B. N., and Witkowska, H. E. (1990) Tandem mass spectrometry in the clinical analysis of variant hemoglobins. Rapid Commun. Mass Spectrom. 4, 396–400. XXM.

    PubMed  CAS  Google Scholar 

  54. Williamson, D., Nutkins, J., Rosthoj, S., Brennan, S. O., Williams, D. H., and Carrell, R. W. (1990) Characterisation of Hb Aalborg, a new unstable hemoglobin variant, by FAB mass spectrometry. Hemoglobin 14, 137–145. XCM.

    PubMed  CAS  Google Scholar 

  55. Hill, R. E. (1990) The widening horizons of bioanalytical mass spectrometry. Clin. Chim. Acta. 194, 1–17. XXM.

    PubMed  CAS  Google Scholar 

  56. Cappiello, A., Palma, P., Papayannopoulos, A, and Biemann, K. (1990) Efficient introduction of HPLC fractions into a high performance tandem mass spectrometer. Chromatographia 30, 477–483. BCX.

    CAS  Google Scholar 

  57. Frigeri, F., Pandolfi, G., Camera, A., Rotoli, B., Ferranti, P., Malorni, A, and Pucci, P. (1990) Hemoglobin G San-Jose: identification by mass spectrometry. Clin. Chem. Enzym. Comm. 3, 289–294. XXX.

    Google Scholar 

  58. Shackleton, C. H. L., Falick, A. M., Green, B. N., and Witkowska, H. E. (1991) Electrospray MS in the clinical diagnosis of variant haemoglobins. J. Chromatogr. 562, 175–190. XCM.

    PubMed  CAS  Google Scholar 

  59. Falick, A. M., Witkowska, H. E., Labin, B. H., Nagel, R. L., and Shackleton, C. H. L (1991) Identification of variant haemoglobins by tandem mass spectrometry, in Techniques in Protein Chemistry II (Villafranca, J. J., ed.), Academic, San Diego, CA, pp. 557–565. XXX.

    Google Scholar 

  60. Oliver, R. W. A. and Green, B. N. (1991) On the application of electrospray-mass spectrometry to the characterisation of abnormal or variant haemoglobins. Trends. Anal. Chem. 10, 85–91. XXX.

    CAS  Google Scholar 

  61. Ferranti, P., Malorni, A., Pucci, P., Fanali, S., Nardi, A., and Ossicini, L. (1991) Capillary zone electrophoresis and mass spectrometry for the characterization of genetic variants of human hemoglobin. Anal. Biochem. 194, 1–8. XCM.

    PubMed  CAS  Google Scholar 

  62. Matsuda, H., Matsuo, T., Katakuse, I., and Wada, Y. (1991) Investigation of amino acid mutations by high resolution mass spectrometry, in Mass Spectrometry of Peptides (Desiderio, D. M., ed.), CRC, Boca Raton, FL, pp. 221–256. XXX.

    Google Scholar 

  63. Lee, T. D. and Rahbar, S. (1991) The mass spectral analysis of hemoglobin variants, in Mass Spectrometry of Peptides (Desiderio, D. M., ed.), CRC, Boca Raton, FL, pp. 257–274. XXX.

    Google Scholar 

  64. Prome, D., Blouquit, Y., Ponthus, C., Prome, J. C., and Rosa, J. (1991) Structure of the human adult hemoglobin minor fraction Alb by electrospray and S.I.M.S. Pyruvic acid as amino-terminal blocking group. J. Biol. Chem. 266, 13,050–13,054. BCM.

    PubMed  CAS  Google Scholar 

  65. Covey, T. R., Huang, E. C., and Henion, J. D. (1991) Structural characterization of protein tryptic peptides via liquid chromatography/MS and collision-induced dissociation of their doubly charged molecular ions. Anal. Chem. 63, 1193–1200. BCM.

    PubMed  CAS  Google Scholar 

  66. Jensen, O. N., Hojrup, P., and Roepstorff, P. (1991) Plasma desorption mass spectrometry as a tool in characterization of abnormal proteins: Application to variant human hemoglobins. Anal. Biochem. 199, 175–183. XCM.

    PubMed  CAS  Google Scholar 

  67. Johansson, I. M., Huang, E. H., Henion, J. D., and Zweigenbaum, J. (1991) Capillary electrophoresis atmospheric pressure ionization mass spectrometry for the characterizatfion of peptides. J. Chromatogr. 554, 311–327. BCM.

    PubMed  CAS  Google Scholar 

  68. Oliver, R. W. A. (1991) LC and MS in the diagnosis of haemoglobin disorders. Lab. Equip. Dig. 29, 9–11. XXX.

    Google Scholar 

  69. Marsh, G., Masino, G., Pucci, P., Ferranti, P., Malorni, A., Kaeda, J., Marsh, J., and Luzzatto, L. (1991) A third instance of the high oxygen affinity variant, Hb Heathrow [β103(G5)Phe → Leu] identification of the mutation by mass spectrometry and by DNA analysis. Hemoglobin 15, 43–51. XXM.

    PubMed  CAS  Google Scholar 

  70. Petrilli, P., Sepe, C., and Pucci, P. (1991) A new procedure for peptide alignment in protein sequence determination using FAB mass spectral data. Biol. Mass Spectrom. 20, 115–120. XCX.

    PubMed  CAS  Google Scholar 

  71. Jensen, O. N. and Roepstorff, P. (1991) Application of reversed phase high performance liquid chromatography and plasma desorption mass spectrometry for the characterisation of a hemoglobin variant. Hemoglobin 15, 497–507. XXM.

    PubMed  CAS  Google Scholar 

  72. Jensen, O. N., Roepstorff, P., Rozynov, B., Horanyi, M., Szelenyi, J., Hollan, S. R., Aseeva, E. A., and Spivak, V. A. (1991) Plasma desorption mass spectrometry of haemoglobin tryptic peptides for the characterisation of a Hungarian α-chain variant. Biol. Mass Spectrom. 20, 579–584. BXM.

    PubMed  CAS  Google Scholar 

  73. Imai, K., Fushitani, K., Miyazaki, C. J., Ishimori, K., Kitagawa, T., Wada, Y., Morimoto, H., Morishima, I., Shih, D. T-b., and Tame, J. (1991) Site-directed mutagenesis in haemoglobin. J. Mol. Biol. 218, 769–778. XXX.

    PubMed  CAS  Google Scholar 

  74. Witkowska, H. E., Lubin, B. H., Beuzard, Y., Baruchel, S., Esseltine, D. W., Vishinsky, E. P., Kleman, K. M., Bardakjian-Michau, J., Pinkoski, L., Cahn, S., Roitman, E., Green, B. N., Falick, A. M., and Shackleton, C. H. L. (1991) Sickle cell disease in a patient with sickle cell trait and compound heterozygosity for hemoglobin S and hemoglobin Quebec-Chori. N. Engl. J. Med. 325, 1150–1154. XXX..

    PubMed  CAS  Google Scholar 

  75. Prome, J. C. (1991) Characterisation of post-translational modifications of proteins by mass spectrometry some selected problems. Analusis 19, 79–84. BCX.

    CAS  Google Scholar 

  76. Manning, L. R., Morgan, S., Beavis, R. C., Chait, B. T., Manning, J. R., Hess, J. R., Cross, M., Currell, D. L., Marini, M. A., and Winslow, R. B. (1991) Preparation, properties and plasma retention of human hemoglobin derivatives, comparison of uncrosslinked carboxymethylated hemoglobin with crosslinked tetrameric hemoglobin. Proc. Natl. Acad. Sci. USA 88, 3329–3333. BCM.

    PubMed  CAS  Google Scholar 

  77. Goldberg, D. E., Slater, A. F. G., Beavis, R., Chait, B., Cerami, A., and Henderson, G. B. (1991) Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum, a catabolic pathway initiated by a specific aspartic protease. J. Exp. Med. 173, 961–969. BCM.

    PubMed  CAS  Google Scholar 

  78. Lubin, B. H., Witkowska, H. E., and Kleman, K. (1991) Laboratory diagnosis of hemoglobinopathies. Clin. Biochem. 24, 363–374. XXM.

    PubMed  CAS  Google Scholar 

  79. Chowdhury, S. K., Katta, V., and Chait, B. T. (1991) Electrospray ionization mass spectrometric analysis of proteins, in Methods and Mechanisms for Producing Ions from Large Molecules (Standing, K. G. and Ens, W., eds.), Plenum, New York (NATO Advanced Science Institute, Series B, vol. 269), pp. 201–210. XCX.

    Google Scholar 

  80. Ishimori, K., Imai, K., Miyazaki, G., Kitagawa, T., Wada, Y., Morimoto, H., and Morishima, I. (1992) Site-directed mutagenesis in hemoglobin. Biochemistry 31, 3256–3264. XXX.

    PubMed  CAS  Google Scholar 

  81. Brennan, O., Shaw, J., Allen, J., and George, P. M. (1992) Beta 141 Leu is not deleted in the unstable haemoglobin Atlanta-Coventry but is replaced by a novel amino acid of mass 129 daltons. Br. J. Haematol. 81, 99–103. XCM.

    PubMed  CAS  Google Scholar 

  82. Wada, Y. (1992) Mass spectrometry in the integrated strategy for the structural analysis of protein variants. Biol Mass Spectrom. 21, 617–624. XXX.

    PubMed  CAS  Google Scholar 

  83. De Caterina, M., Esposito, P., Grimaldi, E., Di Mario, G., Scopacasa, F., Ferranti, P., Parlapiano, A., Malorni, A., Pucci, P., and Marino, G. (1992) Characterization of hemoglobin Lepore variants by advanced mass spectrometric procedures. Clin. Chem. 38, 1444–1448. XXM.

    PubMed  Google Scholar 

  84. Ferrige, A. G., Seddon, M. J., Green, B. N., Jarvis, S. A., and Skilling, J. (1992) Disentangling electrospray spectra with maximum entropy. Rapid Commun. Mass Spectrom. 6, 707–711. XXX

    CAS  Google Scholar 

  85. Wada, Y., Matsuo, T., Papayannopoulos, I. A., Costello, C. E., and Biemann, K. (1992) Fast atom bombardment and tandem mass spectrometry for the characterisation of hemoglobin variants including a new variant. Int. J. Mass Spectrom. Ion Processes 122, 219–229. BCX.

    CAS  Google Scholar 

  86. De Angioletti, M., Maglione, G., Ferranti, P., De Bonis, C., Lacerra, G., Scarallo, A., Pagano, L., Fioretti, G., Cutolo, R., Malorni, A., Pucci, P., and Carestia, C. (1992) Hemoglobin City of Hope in Italy. Association of the gene with haplotype IX. Hemoglobin 16, 27–34. XCM.

    PubMed  Google Scholar 

  87. Wada, Y., Tamura, J., Musselman, B. D., Kassel, D. B., Sakurai, T., and Matsuo, T. (1992) Electrospray ionization mass spectra of hemoglobin and transferrin by a magnetic sector mass spectrometer. Rapid Commun. Mass Spectrom. 6, 9–13. BCM.

    PubMed  CAS  Google Scholar 

  88. Rotoli, B., Camera, A., Fontana, R., Frigeri, F., Pandolfi, G., Vecchione, R., Poggi, V., Longo, G., Carestia, C., De Angiolestti, M., Lacerra, G., Pucci, P., Marino, G., Ferranti, P., Malorni, A., Romano, R., and Formisano, S. (1992) Hb-Hyde Park. A de novo mutation identified by mass spectrometry and DNA analysis. Haematologica 77, 110–118. XXM.

    PubMed  CAS  Google Scholar 

  89. Vassaur, C., Blouquit, Y., Kister, J., Prome, D., Kavanaugh, J. S., Rogers, P. H., Guillemin, C., Arnone, A., Galacteros, F., Poyart, C., Rosa, J., and Wajcman, H. (1992) Hemoglobin Thionville. J. Biol Chem. 267, 12,682–12,691 XXX.

    Google Scholar 

  90. Coghlan, D., Jones, G., Denton, K. A., Wilson, M. T., Chan, B., Harris, R., Woodrow, J. R., and Ogden, J.E. (1992) Structural and functional characterisation of recombinant human, haemoglobin A expressed in Saccharomyces cerevisiae. Eur. J. Biochem. 207, 931–936. XXX

    PubMed  CAS  Google Scholar 

  91. Malorni, A., Pucci, P., Ferranti, P., and Marino, G. (1992) Characterisation of human hemoglobin variants by mass spectrometry, in Mass Spectrometry in the Biological Sciences: A Tutorial (Gross, M. L., ed.), Kluwer, Dordrecht, Germany, pp. 325–332. CBX.

    Google Scholar 

  92. Suwanrumpha, S., McClean, M. A., Fink, S. W., Wilder, C., Stachowiak, K., Dyckes, D. F., and Freas, R. B. (1992) Determination of biomolecules by using liquid chromatography and thermospray mass spectrometry, in Mass Spectrometry in the Biological Sciences: A Tutorial (Gross, M. L., ed.), Kluwer, Dordrecht, Germany, pp. 281–301. XXX.

    Google Scholar 

  93. Roepstorff, P. (1992) Plasma desorption mass spectrometry, principles and applications to protein studies, in Mass Spectrometry in the Biological Sciences: A Tutorial (Gross, M. L., ed.), Kluwer, Dordrecht, Germany, pp. 213–227. XXX.

    Google Scholar 

  94. Seta, K., Hail, M., Mylchreest, I., and Okuyama, T. (1992) Structural analysis of hemoglobin variant by microbore column HPLC/ESI/TSQMS. Kuromatogurafi 13, 349,350 (Japanese) XCX.

    Google Scholar 

  95. Mosca, A., Paleari, R., Rubino, F. M., Zecca, L., De Bellis, G., Debernardi, S., Baudo, F., Cappellini, D., and Fiorelli, G. (1993) Hemoglobin Abrusso identified by mass spectrometry and DNA analysis. Hemoglobin 17, 261–268. XCM.

    PubMed  CAS  Google Scholar 

  96. Witkowska, H. E., Bitsch, F., and Shackleton, C. H. L. (1993) Expediting variant hemoglobin characterization by combined HPLC/electrospray mass spectrometry. Hemoglobin 17, 227–242. XXM.

    PubMed  CAS  Google Scholar 

  97. Light-Wahl, K. J., Loo, J. A., Edmonds, C. G., Smith, R. D., Witkowska, H. E., Shackleton, C. H. L., and Wu, C. S. C. (1993) Collisionally activated dissociation and tandem mass-spectrometry of intact hemoglobin beta-chain variant proteins with electrospray ionization. Biol. Mass Spectrom. 22, 112–120. BCM.

    PubMed  CAS  Google Scholar 

  98. Shen, T-J., Ho, N. T., Simplaceanu, V., Zou, M., Green, B. N., Tam, M. F., and Ho, C. (1993) Production of unmodified human adult hemoglobin in Escherichia coli. Proc. Natl. Acad. Sci 90, 8108–8112. BCM

    PubMed  CAS  Google Scholar 

  99. Lane, P. A., Witkowska, H. E., Falick, A. M., Houston, M. L., and McKinna, J. D. (1993) Hemoglobin D Ibadan-beta thalassemia. detection by neonatal screening and confirmation by electrospray ionization mass spectrometry. Am. J. Hematol. 44, 158–161. XXM.

    PubMed  CAS  Google Scholar 

  100. Brennan, S. O., Shaw, J. G., George, P. M., and Huisman, T. H. J. (1993) Posttranslational modification of beta 141 Leu associated with the β(75)Leu → Pro mutation in hemoglobin Atlanta. Hemoglobin 17, 1–7 XCM.

    PubMed  CAS  Google Scholar 

  101. Ferranti, P., Parlapiano, A., Malorni, A., Pucci, P., Marino, G., Cossu, G., Manta, L., and Masala, B. (1993) Hemoglobin Oziero: a new alpha chain variant (α(71) Ala → Val) characterization using FAB-and electrospray-mass spectrometric techniques. Biochim. Biophys. Acta. 1162, 203–208. BCM.

    PubMed  CAS  Google Scholar 

  102. De Llano, J. J. M., Jones, W., Schneider, K., Chait, B. T., Benjamin, L. J., and Weksler, B. (1993) Biochemical and functional properties of recombinant human sickle hemoglobin expressed in yeast. J Biol. Chem. 268, 27,004–27,011 XCX.

    Google Scholar 

  103. Wilson, J. B., Brennan, S. O., Allen, J., Shaw, J. G., Gu, L-H., and Huisman, T. H. J. (1993) The M gamma chain of human fetal hemoglobin is an A gamma chain with an in vitro modification of gamma 141 leucine to hydroxyleucine. J. Chromatogr. Biomed. Appl. 617, 37–42. XCM.

    CAS  Google Scholar 

  104. De Llano, J. J. M., Schneewind, O., Stetler, G., and Manning, J. M. (1993) Recombinant human sickle hemoglobin expressed in yeast. Proc. Natl. Acad. Sci. USA 90, 918–922. BCM.

    Google Scholar 

  105. Li, Y-T., Hsieh, Y.-L, Henion, J. T., and Ganem, B. (1993) Studies on heme binding in myoglobin, hemoglobin and cytochrome C by ion spray mass spectrometry. J. Am. Soc. Mass Spectrom. 4, 631–637. XXX.

    CAS  Google Scholar 

  106. Loo, J. A., Ogorzalek-Loo, R. R., and Andrews, P. C. (1993) Primary to quaternary protein structure determination with electrospray ionization and magnetic sector mass spectrometry. Org. Mass Spectrom. 28, 1640–1649. XXX.

    CAS  Google Scholar 

  107. Ganem, B. and Hemon, J. D. (1993) Detecting non-covalent complexes of biological macromolecules: new applications of ion-spray mass spectrometry. Chemiracts. Org. Chem. 6, 1–22. XXX.

    CAS  Google Scholar 

  108. Wajcman, H., Kalmes, G., Groff, P., Prome, D., Riou, J., and Galacteros, F. (1993) Hemoglobin Melusine, (α( 114)Pro → Ser) A new neutral hemoglobin variant. Hemoglobin 17, 397–405. XXX.

    PubMed  CAS  Google Scholar 

  109. Wajcman, H., Kister, J., Prome, D., Galacteros, F., and Gilsanz, F. (1993) Hb Villaverde (β(89)Ser → Thr): the structural modification of an intrasubunit contact is responsible for a high oxygen affinity. Biochim. Biophys. Acta. 1225, 89–94. BCM.

    PubMed  CAS  Google Scholar 

  110. Springer, D. L., Bull, R. J., Goheen, S. C., Sylvester, D. M., and Edmonds, C. G. (1993) Electrospray ionisation mass spectrometric characterization of acrylamide adducts to hemoglobin. J. Toxicol. Environ. Health 40, 161–176. XCM.

    PubMed  CAS  Google Scholar 

  111. Bergmark, E., Calleman, C. J., He, F., and Costa, L. G. (1993) Determination of hemoglobin adducts in humans occupationally exposed to acrylamide. Toxicol. Appl. Pharmacol. 120, 45–54. XXM.

    PubMed  CAS  Google Scholar 

  112. Shackleton, C. H. L. and Witkowska, H. E. (1994) Mass spectrometry in the characterisation of variant hemoglobins, in Mass Spectrometry Clinical and Biomedical Applications, vol 2 (Desiderio, D. M., ed.), Plenum, New York, pp. 135–199. XXX.

    Google Scholar 

  113. Wada, Y. and Matsuo, T. (1994) Structure determination of aberrant proteins, in Biological Mass Spectrometry, Present and Future (Matsuo, T., Caprioli, R. M., Gross, M. L., and Seyama, Y., eds.), Wiley, Chichester, UK, pp. 369–399. XXX.

    Google Scholar 

  114. Light-Wahl, K. L., Schwartz, B. L., and Smith, R. D. (1994) Observations on the non covalent quaternary associations of proteins by electrospray ionisation mass spectrometry. J. Am. Chem. Soc. 116, 5271–5278. BCX.

    CAS  Google Scholar 

  115. De Llano, J. J. and Manning, J. M. (1994) Properties of a recombinant hemoglobin double mutant. Protein Sci. 3, 1206–1212. BCM.

    Google Scholar 

  116. Yanase, H., Cahill, S., De Llano, J. J., Manning, L. R., Schneider, K., Chatt, B. T., Vandegriff, K. D., Winslow, R. M., and Manning, J. M. (1994) Properties of a recombinant hemoglobin with aspartic acid 99 (beta) substituted by lysine. Protein Sci. 3, 1213–1223. BCM

    PubMed  CAS  Google Scholar 

  117. Wajcman, H., Kister, J., M’Rad, A., Soummer, A. M., and Galacteros, F. (1994) Hemoglobin Cemenelum: α(92)Arg → Trp) a hemoglobin variant of the alpha 1/beta 2 interface that displays a moderate increase in oxygen affinity. Ann. Hematol. 68, 73–76. XXX.

    PubMed  CAS  Google Scholar 

  118. Bakhtiar, R., Wu, Q., Hofstadler, S. A., and Smith, R. D. (1994) Charge state specific facile gas-phase cleavage of Asp 75-Met 76 peptide bond in the alpha chain of human apohemoglobin probed by electrospray ionization mass spectrometry. Biol. Mass Spectrom 23, 707–710. BCM.

    PubMed  CAS  Google Scholar 

  119. Ferranti, P., Malorni, A., and Pucci, P. (1994) Structural characterisisation of hemoglobin variants using capillary electrophoresis and fast atom bombardment mass spectrometry. Methods Enzymol. 231, 45–65. XXM.

    PubMed  CAS  Google Scholar 

  120. Ishimori, K., Hashimoto, M., Imai, K., Fushitani, K., Miyazaki, G., Morimoto, H., Wada, Y., and Morishima, I. (1994) Sate directed mutagenesis in hemoglobin. Biochemistry 33, 2546–2553. XXM.

    PubMed  CAS  Google Scholar 

  121. Konishi, Y. and Feng, R. (1994) Conformational stability of heme proteins in vacuo. Biochemistry 33, 9706–9711. BCM.

    PubMed  CAS  Google Scholar 

  122. Bonaventura, C., Bonaventura, J., Stevens, R., and Millington, D. (1994) Acrylamide in polyacrylamide gels can modify proteins during electrophoresis. Anal. Biochem. 222, 44–48. BXX.

    PubMed  CAS  Google Scholar 

  123. Rao, M. J., Schneider, K., Chatt, B. T., Chao, T. L., Keller, H., Anderson, S., Manjula, B. N., Kumar, R., and Acharya, A. S. (1994) Recombinant hemoglobin A produced in transgenic swine: structural equivalence with human hemoglobin A. Art Cells Blood Subs Immob. BioTech. 22, 695–770. BCM

    CAS  Google Scholar 

  124. Woolfit, A. R. and Bott, P. A. (1994) The analysis of native protein complexes by electrospray ionisation on an Autospec. Fisons Instruments Application Notes no. 36. XXX.

    Google Scholar 

  125. Kluger, R. and Song, Y. (1994) Changing a protein into a general acylating reagent. J. Org. Chem. 59, 733–736. BXX.

    CAS  Google Scholar 

  126. Ferranti, P., Barone, F., Pucci, P., Malorni, A., Marino, G., Pilo, G., Manta, L., and Masala, B. (1994) HbF-Sassari-a novel G-gamma variant with Thr at (75), characterised by MS techniques. Hemoglobin 18, 307–315. BCM.

    PubMed  CAS  Google Scholar 

  127. Gilbert, S C., Van Urk, H., Greenfield, A. J., McAvoy, M. J., Denton, K. A., Coghlan, D., Jones, B. D., and Mead, D. J. (1994) Increase in copy number of an integrated vector during continuous culture of Hansenula polymorpha expressing functional human hemoglobin. Yeast 10, 1569–1580. BCM.

    PubMed  CAS  Google Scholar 

  128. Kim, H-W., Shen, T-J., Sun, D. P., Ho, N. T., Madrid, M., and Ho, C. (1995) A novel low oxygen affinity recombinant hemoglobin (α(96) Val → Trp). J. Mel. Biol. 248, 867–882. XXX.

    CAS  Google Scholar 

  129. Shimizu, A. and Nakanishi, T. (1995) Applications of mass spectrometry for clinical laboratory test. Rinsho Byori. 43, 8–18. (Japanese) XXM.

    PubMed  CAS  Google Scholar 

  130. Yanase, H., Manning, L. R., Vandegriff, K., Winslow, R. M., and Manning, J. M. ( 1995) A recombinant human hemoglobin with asparagnine-102(β) substituted by alanine has a limiting low oxygen affinity, reduced marginally by chloride. Protein Sci. 4, 21–28. BCM.

    PubMed  CAS  Google Scholar 

  131. Hofstadler, S. A., Swanek, F. D., Gale, D. C., Ewing, A. G., and Smith, R. D. (1995) Capillary electrophoresis-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 67, 1477–1480. XCM.

    PubMed  CAS  Google Scholar 

  132. Prome, D., Prome, J. C., Gale, D. C., and Rosa, J. (1995) Characterization of new amino-terminal blocking groups in the normal human adult hemoglobin. Eur. Mass Spectrom. 1, 195–201. XCM.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc.

About this protocol

Cite this protocol

Oliver, R.W.A., Carrier, M.P. (1996). The Use of Databases in Searching the Literature of Biological Mass Spectrometry. In: Chapman, J.R. (eds) Protein and Peptide Analysis by Mass Spectrometry. Methods in Molecular Biology™, vol 61. Humana Press. https://doi.org/10.1385/0-89603-345-7:295

Download citation

  • DOI: https://doi.org/10.1385/0-89603-345-7:295

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-345-0

  • Online ISBN: 978-1-59259-547-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics