Skip to main content

Rapid Analysis of Single-Cysteine Variants of Recombinant Proteins

  • Protocol
Protein and Peptide Analysis by Mass Spectrometry

Abstract

Protein engineering methods have been widely used to study individual structural factors that contribute to protein stability (1,2). An important goal of that research is to enhance the commercial or medicinal utility of wild-type (WT) proteins by increasing then stability in a rational, step-by-step fashion (3). We recently characterized a series of single-cysteine variants of subtilisin BPN′, a proteolytic enzyme used in commercial laundry formulations. They had been prepared (4) in part because random mutagenesis experiments indicated that some of these variants were more stable than the WT enzyme (3). We wanted to compare the stabilities of the mutants with those observed after engineering single disulfide bonds into the subtilisin BPN′ backbone (5,6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, T. (1989) Mutational effects on protein stability. Annu. Rev. Biochem. 58, 765–798.

    Article  PubMed  CAS  Google Scholar 

  2. Pantoliano, M. W., Ladner, R. C., Bryan, P. N., Rollence, M. L., Wood, J. F., and Poulos, T. L. (1987) Protein engineering of subtilisin BPN′: enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Biochemistry 26, 2077–2082.

    Article  PubMed  CAS  Google Scholar 

  3. Pantoliano, M. W., Whitlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., and Bryan, P. N. (1989) Large increases in general stability of subtilisin BPN′ through incremental changes in the free energy of unfolding. Biochemistry 28, 7205–7212.

    Article  PubMed  CAS  Google Scholar 

  4. Brode, P. F., Erwin, C. R., Rauch, D. S., Lucas, D. S., and Rubingh, D. N. (1994) Site-specific variants of subtilisin BPN′ with enhanced surface stability. J. Biol. Chem. 269, 23,538–23,543.

    PubMed  CAS  Google Scholar 

  5. Katz, B. A. and Kossiakoff, A. (1986) The crystallographically determined structures of atypical strained disulfides engineered into subtilisin. J. Biol Chem. 261, 15,480–15,485.

    PubMed  CAS  Google Scholar 

  6. Mitchinson, C. and Wells, J. A. (1989) Protein engineering disulfide bonds in subtilisin BPN′. Biochemistry, 28, 4807–4815.

    Article  PubMed  CAS  Google Scholar 

  7. Falke, J. J. and Koshland, D., Jr (1987) Global flexibility in a sensory receptor a sate-directed cross-linking approach. Science 237, 1596–1600.

    Article  PubMed  CAS  Google Scholar 

  8. Flitsch, S. L. and Khorana, H. G. (1989) Structure studies on transmembrane proteins. 1. Model study using bacteriorhodopsin mutants containing single cysteine residues. Biochemistry 28, 7800–7805.

    Article  PubMed  CAS  Google Scholar 

  9. Sarsawat, L. D., Pastra-Landis, C., and Lowey, S. (1992) Mapping single cysteine mutants of light chain 2 in chicken skeletal myosin. J. Biol. Chem. 29, 21,112–21,118.

    Google Scholar 

  10. Ling, R. and Luckey, M. (1994) Use of single-cysteine mutants to probe the location of the disulfide bond in LamB protein from Escherichia coli. Biochem. Biophys. Res. Commun. 201, 242–247.

    Article  PubMed  CAS  Google Scholar 

  11. Beavis, R. C. and Chait, B. T. (1990) Rapid, sensitive analysis of protein mixtures by mass spectrometry. Proc. Natl. Acad. Sci. USA 87, 6873–6877.

    Article  PubMed  CAS  Google Scholar 

  12. Hillenkamp, F., Karas, M., Beavis, R. C., and Chait, B. T. (1991) Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal. Chem. 63, 1193A–1203A.

    Article  PubMed  CAS  Google Scholar 

  13. Carr, S. A., Hemling, M. E., Bean, M. F., and Roberts, G. D. (1991) Integration of mass spectrometry in analytical biotechnology. Anal. Chem. 63, 2802–2824.

    Article  PubMed  CAS  Google Scholar 

  14. Briggs, R. G. and Fee, J. A. (1978) Sulfhydryl reactivity of human erythrocyte superoxide dismutase, on the origin of the unsual spectral properties of the protein when prepared by a procedure utilizing chloroform and ethanol for the precipitation of hemoglobin. Biochim. Biophys. Acta 537, 100–109.

    PubMed  CAS  Google Scholar 

  15. Beavis, R. C. and Chait, B. T. (1990) High accuracy mass determination of proteins using matrix-assisted laser desorption mass spectrometry. Anal. Chem. 62, 1836–1840.

    Article  PubMed  CAS  Google Scholar 

  16. Markland, F. S. and Smith, E. L. (1967) Subtilisin BPN′ VIII. Isolation of CNBr peptides and the complete amino acid sequence. J. Biol. Chem. 242, 5198–5211.

    PubMed  CAS  Google Scholar 

  17. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A., and Chen, E. Y. (1983) Cloning sequencing and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res. 11, 7911–7925.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, B. and Richards, F. M. (1971) The Interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400.

    Article  PubMed  CAS  Google Scholar 

  19. Bott, R., Ultsch, M., Kossiakoff, A., Graycar, T., Katz, B., and Power, S. (1988) The three dimensional structure of Bacillus amyloliquefaciens subtilisin at 1.8 Å and an analysis of the structural consequences of peroxide inactivation. J. Biol. Chem. 263, 7895–7906.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Keough, T.W. et al. (1996). Rapid Analysis of Single-Cysteine Variants of Recombinant Proteins. In: Chapman, J.R. (eds) Protein and Peptide Analysis by Mass Spectrometry. Methods in Molecular Biology™, vol 61. Humana Press. https://doi.org/10.1385/0-89603-345-7:171

Download citation

  • DOI: https://doi.org/10.1385/0-89603-345-7:171

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-345-0

  • Online ISBN: 978-1-59259-547-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics