Skip to main content

Cell Culture of Human Brain Tumors on Extracellular Matrices

Methodology and Biological Applications

  • Protocol
Book cover Human Cell Culture Protocols

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 2))

Abstract

Cell culture is one of the major tools of cell biologists. It has also become an integral part of the daily routine of most oncology laboratories for the purpose of karyotyping, chemoresistance testing, or basic research. It provides investigators with an opportunity to investigate many cellular parameters and interactions in an in vitro system in which the experimental conditions can be controlled and repeated With many tissues, either human or animal, the problems of cell culture are cell attachment and initial survival. Particularly the primary cultures derived from tumor specimens are a problem in many laboratories. Apart from modifications in the composition of tissue-culture plastic materials, other approaches have been used to get around this problem, such as coating of tissue-culture dishes with attachment enhancers, such as polyamino acids (1), fibronectin (2), laminin (3), and collagen (4) Since it was known that endothelial cells are capable of producing a basement membrane even in vitro, bovine cornea1 endothelial basement membrane was explored by Gospodarowicz et al. for its role in regeneration and nonregeneration of cornea1 endothelium in different species This bovine cornea1 extracellular matrix (bECM) was found useful in the cell culture of a wide range of different cells (5, 6), and bECM as well as other ECMs were employed in the cell biology of tumor cells derived from mammary carcinomas (7), urological tumors (8), and different kinds of pituitary adenomas (9, 10), as well as CNS tumors (11), which is the topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bottenstein, J. E., and Sato, G. H., (1980) Fibronectin and polylysine requirement for proliferation of neuroblastoma cells in defined medium Exp Cell Res 129, 361–366

    Article  PubMed  CAS  Google Scholar 

  2. Terranova, V. P., Aumalley, M., Sultan, L. H, Martin, G. R., and Kleinman, H. K., (1986) Regulation of cell attachment and cell number by fibronectin and laminin J Cell Physiol 127, 473–479

    Article  PubMed  CAS  Google Scholar 

  3. Couchmann, J. R., Hook, M., Rees, D., and Timpl, R., (1983) Adhesion, growth and matrix production by fibroblasts on laminin substrates J Cell Biol 96, 177–183

    Article  Google Scholar 

  4. Varani, J., Carey, T. E., Fligiel, S. E. G., McKeever, P. E., and Dixit, V., (1987) Tumor type-specific differences in cell-substrate adhesion among human tumor cell lines Int J Cancer 39, 397–403

    Article  PubMed  CAS  Google Scholar 

  5. Gospodarowicz, D., Vlodavsky, I., and Savlon, N., (1981) The role of fibroblastgrowth factor and the extracellular matrix in the control of proliferation and differentiation of cornea1 endothelial cells Vison Res 21, 87–103

    Article  CAS  Google Scholar 

  6. Gospodarowicz, D., Cohen, D., and Fujii, D. K., (1982) Regulation of cell growth by the basal lamina and plasma factors relevance to embryonic control of cell proliferation and differentiation, in Cold Spring Harbor Conference on Cell Proliferation., vol 9 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. pp 95–124

    Google Scholar 

  7. Lichtner, R. B., Belloni, P. N., and Nicolson, G. L., (1989) Differential adhesion of metastatic rat mammary carcinoma cells to organ-derived microvessel endothelial cells and subendothelial matrix Exp Cell Biol 57, 146–152

    PubMed  CAS  Google Scholar 

  8. Pavelic, K., Bulbul, M. A., Slocum, H. K., Pavelic, Z. P., Rustum, Y. M., Nicdbala, M. J., and Bernacki, R. J., (1986) Growth of human urological tumors on extracellular matrix as a model for the in vitro cultivation of primary tumor explants Cancer Res 46, 3653–3662

    PubMed  CAS  Google Scholar 

  9. Westphal, M., Jaquet, P., and Wilson, C. B., (1986) Long-term culture of human corticotropin-secreting adenomas on extracellular matrix and evaluation of serum free conditions Actu Neuropathol 71, 142–149

    Article  CAS  Google Scholar 

  10. Westphal, M., Hahn, H., and Ludecke, D. K., (1987) Culture of dispersed cells from human pituitary adenomas from acromegalic patients on extracellular matrix, in Growth Hormone, Growth Factors and Acromegaly (Ludecke, D. K., and Tolls, G., eds), Raven, New York, pp 125–133.

    Google Scholar 

  11. Westphal, M., Hansel, M., Brunken, M., Konig, A., Koppen, J. A., and Herrman, H. D., (1987) Initiation of primary cell cultures from human intracranial tumors on extracellular matrix from bovine cornea1 endothelial cells Exp Cell Biol 55, 152–163

    PubMed  CAS  Google Scholar 

  12. Hynes R. O., (1992) Integrins versatility, modulation and signalling in cell adhesion Cell 69, 1l–25

    Article  Google Scholar 

  13. Alanko, T., Tienan, J., Lehtonen, E., and Saksela, O., (1994) Development of FGF-dependency in human embryonic carcinoma cells after retmoic acid-induced differentiation Dev Biol 161, 141–153

    Article  PubMed  Google Scholar 

  14. Adams, J. C., and Watt, F. M., (1993) Regulation of development and differentiation by extracellular matrix. Development 117, 1183–1198

    PubMed  CAS  Google Scholar 

  15. Vlodavsky, Z., Lui, G. M., and Gospodarowicz, D. J., (1980) Morphological appearance, growth behaviour and migratory activity of human tumor cells maintained on extracellular matrix versus plastic Cell 19, 607–616

    Article  PubMed  CAS  Google Scholar 

  16. Payne, H. R., and Lemmon, V., (I993) Glial cells of the O-2A lineage bind preferentially to N-cadherin and develop distinct morphologies Dev Biol 159, 595–607

    Article  PubMed  CAS  Google Scholar 

  17. Rutka, J. T., (1986) Effects of extracellular matrix proteins on the growth and differentiation of an anaplastic glioma cell line. Can J Neural Sci 13, 301–306

    CAS  Google Scholar 

  18. Westphal, M., Hansel, M., Nausch, H., Rohde, E., and Herrmann, H. D., (1990) Culture of human brain tumors on an extracellular matrix derived from bovine cornea1 endothelial cells and cultured human glioma cells, in Methods in Molecular Biology, vol 5, Animal Cell Culture (Pollard, J. W., and Walker, J. M., eds ), Humana Press, Clifton, NJ, pp 113–131

    Google Scholar 

  19. Weiner, R. I., Bethea, C. L., Jaquet, P., Ramsdell, J. S., and Gospodarowicz, D. J., (1983) Culture of dispersed anterior pituitary cells on extracellular matrix Methods in Enzymol 103, 287–294

    Article  CAS  Google Scholar 

  20. Gospodarowicz, D., Cheng, J., Lui, G. M., Baird, A., and Bohlen, P., (1984) Isolation of brain fibroblast growth factor by heparin sepharose affinity chromatography identity with pituitary fibroblast growth factor Proc Natl Acad Sci USA 81, 6963–6967

    Article  PubMed  CAS  Google Scholar 

  21. Westphal, M., Hansel, M., Hamel, W., Kunzmann, R., and Holzel, F., (1994) Karyotype analysis of 20 human glioma cell lines Acta Neurochir 126, 17–26

    Article  CAS  Google Scholar 

  22. Cardwell, M. C., and Rome, L. H., (1988) Evidence that an RGD-dependent receptor mediates the binding of oligodendrocytes to a novel ligand in a glial-derived matrix J Cell Biol 107, 1541–1549.

    Article  PubMed  CAS  Google Scholar 

  23. Liotta, L. A., and Stetler-Stevenson, W. G., (1991) Tumor invasion and metastasis an imbalance of positive and negative regulation Cancer Res 51, 5054–5059

    Google Scholar 

  24. Shapiro, J. R., (1986) Biology of gliomas chromosomes, growth factors and oncogenes Sem Oncol 13, 4–15

    CAS  Google Scholar 

  25. Giese, A., Rief, M., and Berens, M., (1994) Determinants of human glioma cell migration Cancer Res 54, 3887–3904

    Google Scholar 

  26. Mucke, L., and Rockenstein, E. M., (1993) Prolonged delivery of transgene prod ucts to specific brain regions by migratory astrocyte grafts Transgene 1, 3–9

    Google Scholar 

  27. Westphal, M., Stavrou, D., Nausch, H., Valdueza, J. M., and Herrmann, H.-D., (1994) Human neurocytoma cells in culture show characteristics of astroglial differentiation J Neurosci Res 38, 698–704.

    Article  PubMed  CAS  Google Scholar 

  28. Vlodavsky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J., and Klagsbrun, M., (1987) Endothelial cell derived basic fibroblast growth factor synthesis and deposition into subendothelial extracellular matrix Proc Natl Acad Sci USA 84, 2292–2296

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Westphal, M., Nausch, H., Zirkel, D. (1996). Cell Culture of Human Brain Tumors on Extracellular Matrices. In: Jones, G.E. (eds) Human Cell Culture Protocols. Methods in Molecular Medicine, vol 2. Humana Press. https://doi.org/10.1385/0-89603-335-X:81

Download citation

  • DOI: https://doi.org/10.1385/0-89603-335-X:81

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-335-1

  • Online ISBN: 978-1-59259-586-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics