Microencapsulation of Vaccines

  • David H. Jones
Part of the Methods in Molecular Medicine™ book series (MIMM, volume 4)


Despite obvious successes in controlling most serious childhood infections, there is constant pressure to develop cheaper, safer, and more effective infant vaccination programs. However, any improvements to pediatric vaccines in the foreseeable future are likely to arise through the introduction of better adjuvants and delivery systems. For example, a single injection comprising primary and booster doses of vaccine would improve compliance in a cost-effective way by reducing the number of visits to clinics or medical centers. Equally, administering existing vaccines orally would remove the trauma of injection and the reliance on medical staff to perform the injections. Many vaccines are dependent on a cold chain; improving the stability of vaccines would help to reduce the cost of vaccination, To tackle such issues, researchers are borrowing ideas from other areas of the pharmaceutical industry to try to improve the performance of vaccines and reduce the cost of these important health-care interventions.


Entrapment Efficiency Glycolic Acid Bovine Serum Albumin Solution Orifice Tube Potent Immune Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beck, L. E., Pope, V. Z., Flowers, E., Cowsar, D. R., Tice, T. R., Lewis, D. H., Dunn R. L., Moore, and Gilley, R. M. (1983) Poly(dL-lactide-co-glycolide)/norethisterone microcapsules: an injectable biodegradable contraceptive. Biol. Reprod. 28, 186–195.PubMedCrossRefGoogle Scholar
  2. 2.
    Verrijk, R., Smolders, I. J. H., Bosnie, N., and Begg, A. C. (1992) Reduction of systemic exposure and toxicity of cisplatin by encapsulation in polylactide-co-glycolide. Cancer Res. 52, 6653–6656.PubMedGoogle Scholar
  3. 3.
    Kohn, J., Niemi, S. M., Albert, E. C., Murphy, J., Langer, R., and Fox, J. (1986) Single-step immunisation using controlled release biodegradable polymer with sustained adjuvant activity. J. Immunol. Methods 95, 31–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Morris, W., Steinhoff, M. C., and Russell, P. K. (1994) Potential of polymer microencapsulation technology for vaccine innovation. Vaccine 12, 5–11.PubMedCrossRefGoogle Scholar
  5. 5.
    Walker, R. I. (1994) New strategies for using mucosal vaccination to achieve more effective immunisation. Vaccine 12, 387–400.PubMedCrossRefGoogle Scholar
  6. 6.
    Reul, G. J. (1977) Use of vicryl (polyglactin 910) sutures in general surgery and cardiothoracic procedures. Am. J. Surg. 134, 297–299.PubMedCrossRefGoogle Scholar
  7. 7.
    Vert, M., Christel, P., Chabot, F., and Leray, L. F. (1984) Bioresorbable plastic materials for bone surgery, in Macromolecular Biomaterials (Hastings, H. W. and Ducheyne, P., eds.), CRC, Boca Raton, FL, pp. 119–142.Google Scholar
  8. 8.
    Visscher, G. E., Robinson, R. L., Maulding, H. V., Fong, J. W., Pearson, J. E., and Argentieri, G. J. (1985) Biodegradation and tissue reaction to 50:50 poly(D,L-lactide-co-glycohde) microcapsules. J. Biomed. Mater. Res. 19, 349–365.PubMedCrossRefGoogle Scholar
  9. 9.
    Wise, D. L., Fellman, T. D., Sanderson, J. E., and Wentworth, R. L. (1979) Lactic/glycolic acid polymers, in Drug Carriers in Biology and Medicine (Gregoriadis, G., ed.), Academic, London, pp. 237–270.Google Scholar
  10. 10.
    Vert, M., Li, S., and Garreau, H. (1991) More about the degradation of LA/GA-derived matrices in aqueous media. J. Control. Rel. 16, 15–26.CrossRefGoogle Scholar
  11. 11.
    Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L. H., and Langer, R. (1991) Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm. Res. 8, 713–720.PubMedCrossRefGoogle Scholar
  12. 12.
    Aguado, M. T. and Lambert, P.-H. (1992) Controlled release vaccines-biode-gradable polylactide/polyglycolide (PL/PG) microspheres as antigen vehicles. Immunobiology 184, 113–125.PubMedGoogle Scholar
  13. 13.
    Eldridge, J. H., Staas, J. K., Meulbroek, J. A., McGhee, J. R., Tice, T. R., and Gilley, R. M. (1991) Biodegradable microspheres as a vaccine delivery system. Mol. Immunol. 28, 287–294.PubMedCrossRefGoogle Scholar
  14. 14.
    Eldridge, J. H., Staas, J. K., Meulbroek, J. A., Tice, T. R., and Gilley, R. M. (1991) Biodegradable and biocompatible poly(dl-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralising antibodies. Infect. Immun. 59, 2978–2986.PubMedGoogle Scholar
  15. 15.
    Mestecky, J., Moldoveanu, Z., Novak, M., Huang, W.-Q, Gilley, R. M., Staas, J. K., Schafer, D., and Compans, R. W. (1994) Biodegradable microspheres for the delivery of oral vaccines J Control. Rel. 28, 131–141CrossRefGoogle Scholar
  16. 16.
    Eldridge, J. H., Hammond, J., Meulbroek, J. A., Staas, J. K., Gilley, R. M., and Tice, T. M. (1990) Controlled vaccine release in the gut-associated lymphoid tissues 1. Orally administered biodegradable microspheres target the Peyer’s patches J, Control Rel. 11, 205–214.CrossRefGoogle Scholar
  17. 17.
    Bockman, D. E. and Cooper, M. D. (1973) Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix and Peyer’s patches. An electron microscope study. Am. J. Anat. 136, 455–477.PubMedCrossRefGoogle Scholar
  18. 18.
    O’Hagan, D T. (1990) Intestinal translocation of particulate-implications for drug and antigen delivery. Adv. Drug Delivery Rev. 5, 265–285.CrossRefGoogle Scholar
  19. 19.
    Challacombe, S. J., Rahman, D., Jeffery, H., Davis, S. S., and O’Hagan, D. T. (1992) Enhanced secretory IgA and systemic IgG antibody responses after oral immunisation with biodegradable microparticles containing antigen. Immunology 76, 164–168.PubMedGoogle Scholar
  20. 20.
    Maloy, K.J., Donachie, A. M., O’Hagan, D. T., and Mowat, A. McI. (1994) Induction of mucosal and systemic immune responses by immunisation with ovalbumin entrapped in poly(lactide-co-glycolide) micropartmles. Immunology 81, 661–667.PubMedGoogle Scholar
  21. 21.
    Jeffery, H., Davis, S. S., and O’Hagan, D. T. (1993) The preparation and characterisation of poly(lactide-co-glycolide) microparticles. II. The entrapment of a model protem using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm. Res. 10, 362–368.PubMedCrossRefGoogle Scholar
  22. 22.
    Eldridge, J. H., Staas, J. K., Meulbroek, J. A., Tice, T. R, and Gilley, R. M. (1991) Biodegradable and biocompatible poly(dl-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralising antibodies. Infect. Immun 59, 2978–2986.PubMedGoogle Scholar
  23. 23.
    Alonso, M. J., Gupta, R. Min, Siber, G. R., and Langer, R. (1994) Biode-gradable microspheres as controlled-release tetanus toxoid delivery systems Vaccine 12, 299–306.PubMedCrossRefGoogle Scholar
  24. 24.
    Jones, D. H., McBride, B. W., Jeffery, H., O’Hagan, D. T., Robinson, A., and Farrar, G. H. (1995) Protection of mice from Bordetella pertussis respiratory infection using microencapsulated pertussis fimbriae. Vaccine 13, 675–681.PubMedCrossRefGoogle Scholar
  25. 25.
    Cleland, J. L., Powell, M. F., Lim, A., Barron, L., Berman, P. W, Eastman, D. J., Nunberg, J. H., Wrin, T., and Vennari, J. (1994) Development of a single-shot subunit vaccine for HIV-1. Aids Res Human Retroviruses 10, S21–S26.Google Scholar

Copyright information

© Humana Press Inc, Totowa, NJ 1996

Authors and Affiliations

  • David H. Jones
    • 1
  1. 1.Centre for Applied Microbiology and ResearchPorton DownUK

Personalised recommendations