Skip to main content

Calculating Protein Structures from NMR Data

  • Protocol
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 60))

Abstract

Today many, if not most, NMR measurements with proteins are performed with the ultimate aim of determining their three-dimensional (3D) structure (1). However, NMR is not a “microscope with atomic resolution” that would directly produce an image of a protein. Rather, it is able to yield a wealth of indirect structural information from which the 3D structure can be revealed only by extensive calculations. The pioneering first structure determinations of proteins in solution (e.g., 2–6) were year-long struggles, both fascinating and tedious because of the lack of established NMR techniques and numerical methods for structure calculation, and hampered by limitations of the spectrometers and computers of the time. Recent experimental, theoretical, and technological advances —and the dissemination of the methodological knowledge—have changed this situation completely: Given a sufficient amount of a purified, water-soluble protein with less than approx 200 amino acid residues, its 3D structure in solution can be determined routinely by the NMR method. Protein structures with up to about 100 residues can be solved by [1H]-NMR alone, whereas for larger proteins labeling with 13C and 15N is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.

    Google Scholar 

  2. Braun, W., Bösch, C., Brown, L. R., Gō, N., and Wuthrich, K. (1981) Combined use of proton-proton overhauser enhancements and a distance geometry algorithm for determination of polypeptide conformations. Application to micelle-bound glucagon. Biochim. Biophys. Acta. 667, 377–396.

    PubMed  CAS  Google Scholar 

  3. Braun, W., Wider, G., Lee, K. H., and Wuthrich, K. (1983) Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. J. Mol. Biol. 169, 921–948.

    PubMed  CAS  Google Scholar 

  4. Arseniev, A. S., Kondakov, V. I., Maiorov, V. N., and Bystrov, V. F. (1984) NMR solution spatial structure of’ short’ scorpion insectotoxin I5A. FEBS Lett. 165, 57–62.

    Google Scholar 

  5. Zuiderweg, E. R. P., Billeter, M., Boelens, R., Scheek, R. M., Wuthrich, K., and Kaptein, R. (1984) Spatial arrangement of the three a helices in the solution structure of E. coli lac repressor DNA-binding domain. FEBS Lett. 174, 243–247.

    PubMed  CAS  Google Scholar 

  6. Williamson, M. P., Havel, T. F., and Wuthrich, K. (1985) Solution conformation of proteinase inhibitor IIa from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J. Mol. Biol. 182, 295–315.

    PubMed  CAS  Google Scholar 

  7. Gordon, S. L. and Wuthrich, K. (1978) Transient proton-proton Overhauser effects in horse ferrocytochrome-c. J. Am. Chem. Soc. 100, 7094–7096.

    CAS  Google Scholar 

  8. Dubs, A., Wagner, G., and Wüthrich, K. (1979) Individual assignments of amide proton resonances in the proton NMR spectrum of the basic pancreatic trypsin inhibitor. Biochim. Biophys. Acta. 577, 177–194.

    PubMed  CAS  Google Scholar 

  9. Wagner, G. and Wüthrich, K. (1982) Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. J. Mol. Biol. 160, 343–361.

    PubMed  CAS  Google Scholar 

  10. Solomon, I. (1955) Relaxation processes in a system of two spins. Physiol Rev. 99, 559–565.

    CAS  Google Scholar 

  11. Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon, Oxford.

    Google Scholar 

  12. Noggle, J. H. and Schirmer, R. E. (1971) The Nuclear Overhauser Effect, Academic, New York.

    Google Scholar 

  13. Macura, S. and Ernst, R. R. (1980) Elucidation of cross relaxation in liquids by 2D NMR spectroscopy. Mol. Phys. 41, 95–117.

    CAS  Google Scholar 

  14. Neuhaus, D. and Williamson, M. P. (1989) The Nuclear Overhauser Effect in Structural and Conformational Analysis, VCH, New York.

    Google Scholar 

  15. Anil-Kumar, Ernst, R. R., and Wuthrich, K. (1980) A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proto-proton cross-relaxation networks in biological macromolecules. Biochem. Biophys.Res. Commun. 95, 1–6.

    Google Scholar 

  16. Torda, A. E., Scheek, R. M., and van Gunsteren, W. (1989) Time-dependent distance restraints in molecular dynamics simulations. Chem. Phys. Lett. 157, 289–294.

    CAS  Google Scholar 

  17. Torda, A. E., Scheek, R. M., and van Gunsteren, W. (1990) Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. J. Mol. Biol. 214, 223–235.

    PubMed  CAS  Google Scholar 

  18. Kalk, A. and Berendsen, H. J. C. (1976) Proton magnetic relaxation and spin diffusion in proteins. J. Magn. Reson. 24, 343–366.

    CAS  Google Scholar 

  19. Ernst, R. R., Bodenhausen, G., and Wokaun, A. (1987) The Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon, Oxford.

    Google Scholar 

  20. Anil-Kumar, Wagner, G., Ernst, R. R., and Wuthrich, K. (1981) Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy, implications for studies of protein conformation. J. Am. Chem. Soc. 103, 3654–3658.

    Google Scholar 

  21. Dobson, C. M., Olejniczak, E. T., Poulson, F. M., and Ratcliffe, R. G. (1982) Time development of proton nuclear Overhauser effects in proteins. J. Magn. Reson. 48, 97–110.

    CAS  Google Scholar 

  22. Keepers, J. W. and James, T. L. (1984) A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J. Magn. Reson. 57, 404–426.

    CAS  Google Scholar 

  23. Yip, P. and Case, D. A. (1989) A new method for refinement of macromolecular structures based on nuclear Overhauser effect spectra. J. Magn. Reson. 83, 643–648.

    CAS  Google Scholar 

  24. Mertz, J. E., Guntert, P., Wüthrich, K., and Braun, W. (1991) Complete relaxation matrix refinement of NMR structures of proteins using analytically calculated dihedral angle derivatives of NOE intensities. J. Biomol. NMR 1, 257–269.

    PubMed  CAS  Google Scholar 

  25. Denk, W., Baumann, R., and Wagner, G. (1986) Quantitative evaluation of cross-peak intensities by projection of two-dimensional NOE spectra on a linear space spanned by a set of reference resonance lines. J. Magn. Reson. 67, 386–390.

    Google Scholar 

  26. Bystrov, V. F. (1976) Spin-spin coupling and the conformational states of peptide systems. Prog. NMR Spectrosc. 10, 41–81.

    Google Scholar 

  27. Karplus, M. (1963) Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 85, 2870,2871.

    CAS  Google Scholar 

  28. DeMarco, A., Llinas, M., and Wüthrich, K. (1978) Analysis of the 1H-NMR spectra of ferrichrome peptides. I. The non-amide protons. Biopolymers 17, 617–636.

    CAS  Google Scholar 

  29. DeMarco, A., Llinás, M., and Wuthrich, K. (1978) 1H-15N spin-spin couplings in alumichrome. Biopolymers 17, 2727–2742.

    CAS  Google Scholar 

  30. Pardi, A., Billeter, M., and Wuthrich, K. (1984) Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3 J HNα, in a globular protein. Use of 3 J HNα for identification of helical secondary structure. J. Mol. Biol. 180, 741–751.

    PubMed  CAS  Google Scholar 

  31. Kessler, H., Gehrke, M., and Griesinger, C. (1988) Two-dimensional NMR spectroscopy, background and overview of the experiments. Angew. Chem. Int. Ed. 27 490–536.

    Google Scholar 

  32. Neuhaus, D., Wagner, G., Vašak, M., Kagi, J. H. R., and Wuthrich, K.(1985) Systematic application of high-resolution, phase-sensitive two-dimensional 1H-NMR techniques for the identification of the amino-acid-proton spin systems in proteins. Eur. J. Biochem. 151, 257–273.

    PubMed  CAS  Google Scholar 

  33. Griesinger, C., Sørensen, O. W., and Ernst, R. R. (1985) Two-dimensional correlation of connected NMR transitions. J. Am. Chem. Soc. 107, 6394–6396.

    CAS  Google Scholar 

  34. Neri, D., Otting, G., and Wuthrich, K.(1990) New nuclear magnetic resonance experiment for measurements of the vicinal coupling constants 3 J HNα in proteins. J. Am. Chem. Soc. 112, 3663–3665.

    CAS  Google Scholar 

  35. Szyperski, T., Guntert, P., Otting, G., and Wuthrich, K. (1992) Determination of scalar coupling constants by inverse Fourier transformation of in-phase multiplets. J. Magn. Reson. 99, 552–560.

    CAS  Google Scholar 

  36. Spera, S.and Bax, A. (1991) Empirical correlation between protein backbone conformation and cα and Cβ 13C nuclear magnetic resonance chemical shifts. J. Am. Chem. Soc. 113, 5490–5492.

    CAS  Google Scholar 

  37. de Dios, A. C., Pearson, J. G., and Oldfield, E. (1993) Secondary and tertiary structural effects on protein NMR chemical shifts. An ab initio approach. Science 260, 1491–1496.

    PubMed  Google Scholar 

  38. Bruschweiler, R., Blackledge, M., and Ernst, R. R. (1991) Multi-conformational peptide dynamics derived from NMR data: A new search algorithm and its application to antamanide. J. Biomol. NMR 1, 3–11.

    PubMed  CAS  Google Scholar 

  39. Billeter, M., Braun, W., and Wuthrich, K. (1982) Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Computation of sterically allowed proton-proton distances and statistical analysis of proton-proton distances in single crystal protein conformations. J. Mol. Biol. 155, 321–346.

    PubMed  CAS  Google Scholar 

  40. Guntert, P., Qian, Y. Q., Otting, G., Muller, M., Gehring, W. J., and Wuthrich K. (1991) Structure determination of the Antp(C39→G) homeodomain from nuclear magnetic resonance data in solution using a novel strategy for the structure calculation with the programs DIANA, CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 531–540.

    PubMed  CAS  Google Scholar 

  41. Clore, G. M., Nilges, M., Sukumaran, D. K., Brunger, A. T., Karplus, M., and Gronenborn, A. M. (1986) The three-dimensional structure of al-purothionin in solution combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics. EMBO J. 5, 2729–2735.

    PubMed  CAS  Google Scholar 

  42. Wuthrich, K., Billeter, M., and Braun, W. (1983) Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 169, 949–961.

    PubMed  CAS  Google Scholar 

  43. Guntert, P., Braun, W., Billeter, M., and Wüthrich, K. (1989) Automated stereospecific 1H NMR assignments and their impact on the precision of protein structure determinations in solution. J. Am. Chem. Soc. 111, 3997–4004.

    Google Scholar 

  44. Nilges, M., Clore, G. M., and Gronenborn, A. M. (1990) 1H-NMR stereospecific assignments by conformational data-base searches. Biopolymers 29, 813–822.

    PubMed  CAS  Google Scholar 

  45. Wider, G., Lee, K. H., and Wüthrich, K. (1982) Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Glucagon bound to perdeuterated dodecylphosphocholine micelles. J. Mol. Biol. 155, 367–388.

    PubMed  CAS  Google Scholar 

  46. Wüthrich, K., Wider, G., Wagner, G., and Braun, W. (1982) Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. J. Mol. Biol. 155, 311–319.

    PubMed  Google Scholar 

  47. Senn, H., Werner, B., Messerle, B. A., Weber, C., Traber, R., and Wuthrich, K.(1989) stereospecific assignment of the methyl 1H NMR lines of valine and leucine in polypeptides by non-random 13C labelling. FEBS Lett. 249, 113–118.

    CAS  Google Scholar 

  48. Neri, D., Szyperski, T., Otting, G., Senn, H., and Wuthrich, K.(1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labelling. Biochemistry 28, 7510–7516.

    PubMed  CAS  Google Scholar 

  49. Hyberts, S. G., Márki, W., and Wagner, G. (1987) Stereospecific assignments of side-chain protons and characterization of torsion angles in eglin-c. Eur. J. Biochem. 164, 625–635.

    PubMed  CAS  Google Scholar 

  50. Weber, P. L., Morrison, R., and Hare, D. (1988) Determining stereo-specific 1H nuclear magnetic resonance assignments from distance geometry calculations. J. Mol. Biol. 204, 483–487.

    PubMed  CAS  Google Scholar 

  51. Guntert, P., Braun, W., and Wuthrich, K. (1991) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J. Mol. Biol. 217, 517–530.

    PubMed  CAS  Google Scholar 

  52. Brünger, A. T. (1992) X- PLOR Version 3.1: A System for X-Ray Crystallography and NMR, Yale University Press, New Haven, CT.

    Google Scholar 

  53. Havel, T. F. and Wüthrich, K. (1984) A distance geometry program for determining the structures of small proteins and other macromolecules from nuclear magnetic resonance measurements of intramolecular 1H–1H proximities in solution. Bull. Math Biol. 46, 673–698.

    CAS  Google Scholar 

  54. Havel, T. F. and Wüthrich, K. (1985) An evaluation of the combined use of nuclear magnetic resonance and distance geometry for the determination of protein conformations in solution. J. Mol. Biol. 182, 281–294.

    PubMed  CAS  Google Scholar 

  55. Blumenthal, L. M. (1970) Theory and Applications of Distance Geometry, Chelsea, New York.

    Google Scholar 

  56. Crippen, G. M. (1977) A novel approach to the calculation of conformation: distance geometry. J. Camp. Physiol. 24, 96–107.

    CAS  Google Scholar 

  57. Nilges, M., Clore, G. M., and Gronenborn, A. M. (1988) Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculaltions. FEBS Lett. 229, 317–324.

    PubMed  CAS  Google Scholar 

  58. Metzler, W. J., Hare, D. R., and Pardi, A. (1989) Limited sampling of conformational space by the distance geometry algorithm: Implications for structures generated from NMR data. Biochemistry 28, 7045–7052.

    PubMed  CAS  Google Scholar 

  59. Havel, T. F. (1991) An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. Mol. Biol. 56, 43–78.

    PubMed  CAS  Google Scholar 

  60. Kuszewski, J., Nilges, M., and Brunger, A. T. (1992) Sampling and efficiency of metrix matrix distance geometry. A novel partial metrization algorithm. J. Biomol. NMR 2, 33–56.

    PubMed  CAS  Google Scholar 

  61. Braun, W.and Gō, N. (1985) Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. J. Mol. Biol. 186, 611–626.

    PubMed  CAS  Google Scholar 

  62. Braun, W. (1987) Distance geometry and related methods for protein structure determination from NMR data. Q. Rev. Biophys. 19, 115–157.

    PubMed  CAS  Google Scholar 

  63. Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A. (1975) Energy parameters in polypeptides VII Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occuring amino acids. J. Phys. Chem. 79, 2361–2381.

    CAS  Google Scholar 

  64. Némethy, G., Pottle, M. S., and Scheraga, H. A. (1983) Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occuring amino acids. J. Phys. Chem. 87, 1883–1887.

    Google Scholar 

  65. Powell, M. J. D. (1977) Restart procedures for the conjugate gradient method. Math. Progr. 12, 241–254.

    Google Scholar 

  66. Noguti, T.and Gō, N.(1983) A method for rapid calculation of a second derivative matrix of conformational energy for large molecules. J. Phys. Soc. Jpn. 52, 3685–3690.

    CAS  Google Scholar 

  67. Abe, H., Braun, W., Noguti, T., and Gō, N. (1984) Rapid calculation of first and second derivatives of conformational energy with respect to dihedral angles in proteins. General recurrent equations. Comput. Chem. 8, 239–247.

    CAS  Google Scholar 

  68. Kline, A. D., Braun, W., and Wuthrich, K. (1988) Determination of the complete three-dimensional structure of the α-amylase inhibitor tendamistat in aqueous solution by nuclear magnetic resonance and distance geometry. J. Mol. Biol. 204, 675–724.

    PubMed  CAS  Google Scholar 

  69. Guntert, P. and Wuthrich, K. (1991) Improved efficiency of protein structure calculations from NMR data using the program DIANA with redundant dihedral angle constraints. J. Biomol. NMR 1, 446–456.

    Google Scholar 

  70. Verlet, L. (1967) Computer ‘experiments’ on classical fluids I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103.

    CAS  Google Scholar 

  71. Allen, M. P. and Tildesley, D. J. (1987) Computer Simulation of Liquids. Clarendon, Oxford.

    Google Scholar 

  72. Brünger, A. T. and Nilges, M. (1993) Computational challenges for macromolecular structure determination by X-ray crystallography and solution NMR-spectroscopy. Q. Rev. Biophys. 26, 49–125.

    PubMed  Google Scholar 

  73. Nilges, M., Kuszewski, J., and Brünger, A. T. (1991) Sampling properties of simulated annealing and distance geometry, in Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy, Plenum, New York, pp. 451–455.

    Google Scholar 

  74. Nilges, M., Clore, G. M., and Gronenborn, A. M. (1988) Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. FEBS Lett. 239, 129–136.

    PubMed  CAS  Google Scholar 

  75. van Gunsteren, W. F. and Berendsen, H. J. C. (1987) Groningen Molecular Simulation (GROMOS) Library Manual, Bromos, Groningen.

    Google Scholar 

  76. Pearlman, D. A., Case, D. A., Caldwell, J. C., Seibel, G. L., Chandra Singh, U., Werner, P., and Kollman, P. A. (1991) AMBER 4.0, University of California, San Francisco.

    Google Scholar 

  77. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) Charmm. a program for macromolecular energy minimization and dynamics calculations. J. Comp. Chem. 4, 187–217.

    CAS  Google Scholar 

  78. Ryckaert, J.-P., Ciccotti, G., and Berendsen, H. J. C. (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341.

    CAS  Google Scholar 

  79. Berendsen, J. H. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690.

    CAS  Google Scholar 

  80. Laskowski, R. A., MacArthur, M. W., Hutchinson, E. G., and Thornton, J. M. (1993) PROCHECK: a program to check stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291.

    CAS  Google Scholar 

  81. McLachlan, A. D. (1979) Gene duplication in the structural evolution of chymotrypsin. J. Mol. Biol. 128, 49–79.

    PubMed  CAS  Google Scholar 

  82. Billeter, M., Schaumann, T., Braun, W., and Wüthrich, K. (1990) Restrained energy refinement with two different algorithms and force fields of the structure of the a-amylase inhibitor tendamistat determined by NMR in solution. Biopolymers 29, 695–706.

    CAS  Google Scholar 

  83. Guntert, P., Brendt, K. D., and Wuthrich, K. (1993) The program ASNO for computer-supported collection of NOE upper distance constraints as input for protein structure determination. J. Biomol. NMR 3, 601–606.

    Google Scholar 

  84. Weiner, P. K., Kollman, P. A., Nguyen, D. T., and Case, D. A. (1986) An all-atom force field for simulations of proteins and nucleic acids. J. Comp. Chem. 7, 230–252.

    CAS  Google Scholar 

  85. McCammon, J. A. and Harvey, S. C. (1987) Dynamics of Proteins and Nucleic Acids, Cambridge University Press, Cambridge.

    Google Scholar 

  86. Brooks, C. L., Karplus, M., and Pettitt, B. M. (1988) Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, Wiley, New York.

    Google Scholar 

  87. Torda, A. E., Brunne, R. M., Huber, T., Kessler, H., and van Gunsteren, W. (1993) Structure refinement using time-averaged J-coupling constant constraints. J. Biomol. NMR 3, 55–66.

    PubMed  CAS  Google Scholar 

  88. Scheek, R. M., Torda, A. E., Kemmink, J., and van Gunsteren, W. F. (1991) Structure determination by NMR. The modeling of NMR parameters as ensemble averages, in Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy, Plenum, New York, pp. 209–217.

    Google Scholar 

  89. Boelens, R., Koning, T. M. G., van der Marel, G. A., van Boom, J. H., and Kaptein, R. (1989) Iterative procedure for structure determination from proton-proton NOEs using a full relaxation matrix approach. Application to a DNA octamer. J. Magn. Reson. 82, 290–308.

    CAS  Google Scholar 

  90. Borgias, B. A. and James, T. L. (1988) Comatose, a method for constrained refinements of macromolecular structure based on two-dimensional nuclear Overhauser spectra. J. Magn. Reson 79, 493–512.

    CAS  Google Scholar 

  91. Gonzalez, C., Rullmann, J. A. C., Bonvin, A. M. J. J., Boelens, R., and Kaptein, R. (1991) Toward an NMR R. factor. J. Magn. Reson. 91, 659–664.

    CAS  Google Scholar 

  92. Thomas, P. D., Basus, V. J., and James, T. L. (1991) Protein solution structure determination using distances from 2D NOE experiments: Effect of approximations on the accuracy of derived structures Proc. Natl. Acad. Sci. USA 88, 1237–1241.

    PubMed  CAS  Google Scholar 

  93. Withka, J. M., Srinivasan, J., and Bolton, P. H. (1992) Problems with, and alternatives to, the NMR R factor. J. Magn. Reson 98, 611–617.

    CAS  Google Scholar 

  94. Ottiger, M., Szyperski, T., Luginbühl, P., Ortenzi, C., Luporini, P., Bradshaw, R. A., and Wüthrich, K. (1994) The NMR solution structure of the pheromone Er-2 from the ciliated protozoan Euplotes raikovi. Prot. Sci. 3, 1515–1526.

    CAS  Google Scholar 

  95. Gronenborn, A. M., Filpula, D. R., Essig, N. Z., Achari, A., Whitlow, M., Wingfield, P., and Clore, G. M. (1991) The immunoglobulin binding domain of streptococcal protein G has a novel and highly stable polypeptide fold. Science 253, 657–661.

    PubMed  CAS  Google Scholar 

  96. Clore, G. M., Appella, E., Yamada, M., Matsushima, K., and Gronenborn, A. M. (1990) Three-dimensional structure of interleukin 8 in solution. Biochemistry 29, 1689–1696.

    PubMed  CAS  Google Scholar 

  97. Berndt, K. D., Güntert, P., and Wuthrich, K. (1993) The NMR solution structure of dendrotoxin K from the venom of Dendroaspis polylepis polylepis. J. Mol. Biol. 234,735–750.

    PubMed  CAS  Google Scholar 

  98. Bartels, C., Xia, T. H., Billeter, M., Guntert, P., and Wüthrich, K. (1995) The program Xeasy for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 5, 1–10.

    Google Scholar 

  99. Szyperski, T., Güntert, P., Stone, S. R., and Wüthrich, K. (1992) The NMR solution structure of hirudin(1–51) and comparison with corresponding three-dimensional structures determined using the complete 65-residue hirudin polypeptide chain. J. Mol. Biol. 228, 1193–1205.

    PubMed  CAS  Google Scholar 

  100. Rydel, T. J., Tulinsky, A., Bode, W., and Huber, R. (1991) Refined structure of the hirudin-thrombin complex. J. Mol. Biol. 221, 583–601.

    PubMed  CAS  Google Scholar 

  101. Eccles, C., Güntert, P., Billeter, M., and Wuthrich, K. (1991) Efficient analysis of protein 2D NMR spectra using the software package EASY. J. Biomol. NMR 1, 111–130.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Güntert, P. (1997). Calculating Protein Structures from NMR Data. In: Reid, D.G. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 60. Humana Press. https://doi.org/10.1385/0-89603-309-0:157

Download citation

  • DOI: https://doi.org/10.1385/0-89603-309-0:157

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-309-2

  • Online ISBN: 978-1-59259-546-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics