Advertisement

Antisense Tumor Therapy

Activated C-Ha-ras Oncogene in the Mouse
  • Eric Wickstrom
Part of the Methods in Molecular Medicine book series (MIMM, volume 1)

Abstract

Cancerous cells display overexpression or mutant expression of one or more of the genes normally used in cell proliferation. Such genes are called protoncogenes (1). The imphcation is that the targets that must be attacked in neoplastic cells are normal cellular genes that have sustained some activating lesion. The ras family of mammalian proto-oncogenes includes three members, termed Ha-ras, Ki-ras, and N-ras, that are found to be activated very often in human solid tumors and leukemias (2).

Keywords

NIH3T3 Cell Focus Formation Antisense Inhibition Rabbit Reticulocyte Lysate mRNA Secondary Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bishop, J. M (1991) Molecular themes in oncogenesis. Cell 64, 235–248.PubMedCrossRefGoogle Scholar
  2. 2.
    Lowy, D. R. and Willumsen, B. M. (1993) Function and regulation ofrus, in Annual Review of Blochemutry, vol 62 (Richardson, C C, Abelson, J N, Melster, A., and Walsh, C T, eds), Annual Reviews, Palo Alto, pp. 851–891Google Scholar
  3. 3.
    McCormick, F (1993) How receptors turn Ras on Nature 363, 15,16Google Scholar
  4. 4.
    Tabin, C. J, Bradley, S. M., Bargmann, C. I, Weinberg, R. A, Papageorge, A G, Scolnick, E. M, Dhar, R, Lowy, D R., and Chang, E H (1982) Mechanism of actlvation of a human oncogene Nature 300, 143–149.PubMedCrossRefGoogle Scholar
  5. 5.
    Belikova, A M., Zarytova, V. F, and Grineva, N I. (1967) Synthesis of ribonucleosldes and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tet Lett. 37, 3557–3562CrossRefGoogle Scholar
  6. 6.
    Zamecnik, P. C. and Stephenson, M L. (1978) InhibitIon of Rous sarcoma virus rephcation and cell transformation by a specific oligodeoxynucleotlde. Proc Nut1 Acad. Scl. USA 75, 280–284.CrossRefGoogle Scholar
  7. 7.
    Wickstrom, E (ed.) (1991) Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS Wiley-Liss, New YorkGoogle Scholar
  8. 8.
    Murray, J. A. H. (ed.) (1992) Antisense RNA and DNA Wiley-Liss, New YorkGoogle Scholar
  9. 9.
    Crooke, S T and Lebleu, B (eds) (1993) Antisense Research and Applications CRC, Boca Raton, FLGoogle Scholar
  10. 10.
    Agrawal. S., ed (1993) Methods In Molecular Bioloay, vol. 20. Protocols for Oligonucleotides and Analogs, Humana, Totowa, NJGoogle Scholar
  11. 11.
    Chang, E H and Miller, P. S (1991) Ras, an inmner membrane transducer of growth stimuli, in Prospects for Antrsense Nucleic Acid Therapeutics for Cancer and AIDS (Wickstrom, E, ed.), Wiley-Llss, New York, pp 115–124.Google Scholar
  12. 12.
    Yu, Z., Chen, D, Black, R J., Blake, K., Ts’o, P O. P, Miller, P., and Chang, E H (1989) Sequence specific inhlbition of in vitro translation of mutated or normal rasp21 J Exp Pathol 4, 97–108PubMedGoogle Scholar
  13. 13.
    Brown, D, Yu, Z P, Miller, P, Blake, K. R, Wei, C., Kung, H F, Black, R, Ts’o, P O. P, and Chang, E. H. (1989) Modulation of ras expression by antisense, nonionic deoxyoligonucleotide analogs Oncogene Res 4, 243–252.PubMedGoogle Scholar
  14. 14.
    Chang, E. H., Yu, Z., Shmozuka, K., Zon, G, Wilson, W. D., and Strekowska, A (1989) Comparative inhibition of ras p21 protein synthesis with phosphorus-modi-tied antisense oligonucleotides. An & Cancer Drug Design 4, 22l–232.Google Scholar
  15. 15.
    Chang, E H., Miller, P. S., Cushman, C, Devadas, K, Pirollo, K F, Ts’o, P O P., and Yu, Z P. (1991) Antisense inhibition of RAS p21 expression that is sensitive to a point mutation Biochemistry 30, 8283–8286PubMedCrossRefGoogle Scholar
  16. 16.
    Salson-Behmoaras, T., Tocque, B., Rey, I., Chassignol, M, Thuong, N T., and Hélène, C. (1991) Short modified antisense oligonucleotide directed against Ha-rus point mutation induces selective cleavage of the mRNA and inhibits T24 cell proliferation. EMBO J. 10, 111l–l116.Google Scholar
  17. 17.
    Reddy, E. P., Reynolds, R. K, Santos, E., and Barbacid, M. (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300, 149–152.PubMedCrossRefGoogle Scholar
  18. 18.
    Srivastava, S K, Yuasa, Y, Reynolds, S H, and Aaronson, S. A. (1985) Effects of two major activating lesions on the structure and conformation of human ras oncogene products. Proc. Natl. Acad SCI USA 82, 38–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Furth, M E., Davis, L J, Fleurdelys, B., and Scolnick, E M (1982) Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family J Virol 43, 294–304PubMedGoogle Scholar
  20. 20.
    Sinha, N. D, Biernat, J, McManus, J., and Koster, H (1984) Polymer support oligonucleotide synthesis XVIII use of G-cyanoethyl-N,N-dialkylamino-N-morpholino phosphoramrdite of deoxynucleosides for the synthesis of DNA fragments stmplifying deprotection and isolation of the final product Nucleic Acids Res 11, 4539–4557CrossRefGoogle Scholar
  21. 21.
    Wickstrom, E. L, Bacon, T. A, Gonzalez, A., Freeman, D. L, Lyman, G. H., and Wickstrom, E(1988) Human promyelocytic leukemia HL-60 cell proliferation and c-myc protein expression are inhibited by an antisense pentadecadeoxynucleotide targeted against c-myc mRNA. Proc. Natl Acad Sci USA 85, 1028–1032PubMedCrossRefGoogle Scholar
  22. 22.
    Sawadogo, M and Van Dyke, M W. (1991) A rapid method for the purification of deprotected oligodeoxynucleotides. Nucleic Acids Res. 19, 674PubMedCrossRefGoogle Scholar
  23. 23.
    de Duve, C., Pressman, B. C, Gianetto, R, Wattiaux, R, and Appelmans, F (1955) Tissue fractionation studies. intracellular distribution patterns of enzymes in rat-liver tissue Bzochem J 60, 604–617.Google Scholar
  24. 24.
    Laemmli, U. K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Nature 227, 680–685PubMedCrossRefGoogle Scholar
  25. 25.
    Graf, T (1973) Two types of target cells for transformation with avian myelocytomatosis virus Vzrology 54, 398–413CrossRefGoogle Scholar
  26. 26.
    Bradford, M. M. (1976) Simple colorimetrtc assay for measuring total protein concentration Anal Bzochem 72, 248–253.CrossRefGoogle Scholar
  27. 27.
    Towbm, J., Staehelin, T, and Gordon, J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. procedures and some applications. Proc Natl Acad Sci 76, 4350–4354.CrossRefGoogle Scholar
  28. 28.
    Reddy, E. P. (1983) Nucleotide sequence analysis of the T24 human bladder carcinoma oncogene Sczence 220, 106l–1063Google Scholar
  29. 29.
    Ishii, S., Merlino, G. T., and Pastan, I. (1985) Promoter region of the human Harvey ras proto-oncogene similarity to the EGF receptor proto-oncogene pro-moter Science 230, 1378–1382.PubMedCrossRefGoogle Scholar
  30. 30.
    Rose, J. K. and Galhone, C. J. (1981) Nucleotide sequences of the mRNAs encoding the vesicular stomatis G and M proteins determined from cDNA clones containing the complete coding regions. J Vzrol 39, 519–528Google Scholar
  31. 31.
    Wickstrom, E., Simonet, W. S., Medlock, K., and Ruiz-Robles, I. (1986) Complementary oligonucleotide probe of vesicular stomatitis virus matrix proteinm mRNA translation. Biophys J 49, 15–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Ratner, L, Haseltine, W., Patarca, R, Livak, K. J., Stacich, B., Josephs, S F, Doran, E. R, Rafalskt, J. A, Whitehorn, E. A., Baumeister, K., Ivanoff, L., Petteway, S R., Pearson, M. L, Lautenberger, J A, Papas, T S., Ghrayeb, J., Chang, N T, Gallo, R C, and Wong-Staal, F. (1985) Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature 313, 277–284PubMedCrossRefGoogle Scholar
  33. 33.
    Vlassov, V V and Yakubov, L A (1991) Oligonucleottdes in cells and in organisms pharmacologtcal considerations, in Prospects for Antisense Nucleic Acid Therupeutics for Cancer and AIDS (Wickstrom, E., ed.), Wiley-Liss, New York, pp 243–266Google Scholar
  34. 34.
    Walder, R Y and Walder, J A. (1988) Role of RNaseH in hybnd-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci USA 85, 501l–5015CrossRefGoogle Scholar
  35. 35.
    Haberken, R C and Cantoni, G L (1973) Studies on a calf thymus RNase specific for ribonucleic acid-deoxyribonuclease and hybrids Biochemistry 12, 2389–2395CrossRefGoogle Scholar
  36. 36.
    Puglist, J D, Wyatt, J. R., and Tinoco, I., Jr. (1988) A pseudoknotted RNA oligonucleotide. Nature 331, 283–286CrossRefGoogle Scholar
  37. 37.
    Kozak, M. (1983) Comparison of initiation of protein synthesis in prokaryotes, eukaryotes, and organelles. Mzcrobzol Rev 47, 145.Google Scholar
  38. 38.
    Goss, D J, Woodley, C L, and Wahba, A J (1987) A fluorescence study of the binding of eucaryotic initiation factors to messenger RNA and messenger RNA analogues Bzochemistry 26, 1551–1556CrossRefGoogle Scholar
  39. 39.
    Miller, P S, McParland, K. B, Jayaraman, K, and Ts’o, P.O P. (1981) Biochemical and biological effects of nonionic nucleic acid methylphosphonates Biochemistry 20, 1874–1880PubMedCrossRefGoogle Scholar
  40. 40.
    Miller, P. S (1989) Non-tonic antisense oligonucleotides, in Oligodeoxynucleotzdes Antisense Inhibitors of Gene Expression (Cohen, J S, ed), CRC, Boca Raton, pp 79–95.Google Scholar
  41. 41.
    Magee, A. I, Gutierrez, L, McKay, I A., Marshall, C. J, and Hall, A. (1987) Dynamic fatty acylation of p21 N-ras EMBO J 6, 3353–3357PubMedGoogle Scholar
  42. 42.
    Gilbert, P. X. and Harris, H. (1988) The role of the ras oncogene in the formation of tumours J Cell Sci 90, 433–446PubMedGoogle Scholar
  43. 43.
    Feramisco, J R, Clark, R., Wong, G, Arnheim, N, Milley, R, and McCormick, F (1986) Transient reversion of ras oncogene-induced cell transformation by antibodies specific for amino acid 12 of RAS protein Nature 314, 639–641.CrossRefGoogle Scholar
  44. 44.
    Wickstrom, E, Bacon, T. A., and Wickstrom, E L (1992) Down-regulation ofc-myc antigen expression in lymphocytes of Eµ-c-myc transgenic mice treated with anti-c-myc DNA methylphosphonate. Cancer Res. 52, 6741–6745PubMedGoogle Scholar
  45. 45.
    Huang, Y, Snyder, R, Kligshteyn, M., and Wickstrom, E (1995) Prevention of tumor formation in a mouse model of Burkiti’s lymphoma by SIX weeks of treatment with anticmyc DNA phosphorothioate. Mol Med 1, 647–658PubMedGoogle Scholar
  46. 46.
    Whitesell, L, Rosolen, A, and Neckers, L M. (1991) In vlvo modulation of N-myc expression by continuous perfusion with an antisense oligonucleottde. Antisense Res Dev 1, 343–350PubMedGoogle Scholar
  47. 47.
    Ratajczak, M Z., Kant, J. A, Luger, S M., Hijiya, N, Zhang, J., Zon, G, and Gewutz, A. M (1992) In vivo treatment of human leukemia in a scud mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 89, 11,823–l1,827.PubMedCrossRefGoogle Scholar
  48. 48.
    Skorskt, T, Nteborowska-Skorska, M, Nicolatdes, N C., Szczylik, C, Iversen, P, Iozo, R V., Zon, G., and Calabretia, B. (1994) Suppression of Philadelphia leukemia cell growth in mice by BCR-ABL anttsense olihgodeoxynucleotide Proc Natl Acad Sci USA 91, 4504–4508CrossRefGoogle Scholar
  49. 49.
    Wickstrom, E (1995) Nuclease resistant derivatives of antisense DNA, in Delivcry Systems for Antisense Olzgonucleotzde Therapeutics (Akhtar, S., ed), CRC, Boca Raton, FL, pp 85–104.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1996

Authors and Affiliations

  • Eric Wickstrom
    • 1
  1. 1.Department of PharmacologyThomas Jefferson UniversityPhiladelphia

Personalised recommendations