Antisense Blockade of Expression

SNAP-25 In Vitro and In Vivo
  • Marina Catsicas
  • Astrid Osen-Sand
  • Julie K. Staple
  • Kenneth A. Jones
  • Guidon Ayala
  • Jonathan Knowles
  • Gabriele Grenningloh
  • Emilio Merlo Pith
  • Stefan Catsicas
Part of the Methods in Molecular Medicine book series (MIMM, volume 1)


With the advent of modern molecular genetics and molecular biology, we will face more and more situations where novel gene products with unknown functions are identified. Genetic linkage analysis will allow the association of novel or known genes to Important diseases (1). Similarly, sensitlve differential cloning procedures will identify rare genes expressed in specific physiological or pathological situations (1, 3). In both cases, establishing the precise function of the identified gene is an essential step for the understanding of the cellular mechanisms that either lead to the disease or are pivotal in important physiological processes.


PC12 Cell Neurite Outgrowth Axonal Growth Amacrine Cell Synapse Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Corder, E H, Saunders, A M, Strittmatter, W. J, Schmechel, D E, Gaskell, P.C., Small, G W, Roses, A D., Hames, J.L, and Pericak-Vance, M. A (1993) Gene dose of Apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families Science 261, 92l–923.CrossRefGoogle Scholar
  2. 2.
    Miller, F D, Naus, G., Higgms, G. A, Bloom, F E., and Milner, R J. (1987) Developmentally regulated rat brain mRNAs: molecular and anatomical characterization J Neurosci 7, 2433–2444PubMedGoogle Scholar
  3. 3.
    Liang, P. and Pardee, A B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971PubMedCrossRefGoogle Scholar
  4. 4.
    Catsicas, S, Thanos, S, and Clarke, P G. H (1987) Major role for neuronal death during development refinement of topographical connections Proc Natl Acad Sci USA 84, 8165–8168PubMedCrossRefGoogle Scholar
  5. 5.
    Karten, H. J and Brecha, N (1983) Localization of neuroactive substances in the vertebrate retina: evidence for lamination of the inner plexiform layer Vision Res 23, 1197–1205.PubMedCrossRefGoogle Scholar
  6. 6.
    Brecha, N., Eldred, W, Kuljis, R. O, and Karten, H. J. (1984) Identtfication and localization of biologically active peptides in the vertebrate retina, in Progress in Retinal Research, vol 3 (Osborne, N N and Chader, G Y, eds), Pergamon, Oxford, pp. 185–226Google Scholar
  7. 7.
    Rager, G. (1976) Morphogenesis and physiogenesis of the retino-tectal connection in the chicken I. The retinal ganglion cells and their axons. Proc R Sot Lond Ser B 192, 331–352CrossRefGoogle Scholar
  8. 8.
    Daniels, M. P. and Vogel, Z (1980) Localization of alpha-bungarotoxin binding sites in synapses of the developing chick retina. Brain Res. 201, 45–56.PubMedCrossRefGoogle Scholar
  9. 9.
    Lebeau, M., Alvarez-Bolado, G., Wahli, W., and Catsicas, S. (1991) PCR-driven DNA-DNA competitive hybridization: a new method for sensitive differential cloning Nucleic Acids Res 19, 4778.PubMedCrossRefGoogle Scholar
  10. 10.
    Alvarez-Bolado, G., Lebeau, M Braissant, Wahli, W., and Catsicas, S (1991) Electrical activity regulates the expression of synapse-specific genes during neuronal development. Soc Neurosci Abstr 17, 215Google Scholar
  11. 11.
    Osen-Sand, A., Catsicas, M., Staple, J K., Jones, K A., Ayala, G., Knowles, J, Grenningloh, G, and Catsicas, S. (1993) Inhibition of axonal growth by SNAP-25 antisense oligonucleotides in vitro and in vivo. Nature 364, 445–448PubMedCrossRefGoogle Scholar
  12. 12.
    Branks, P. L. and Wilson, M. C (1986) Patterns of gene expression in the murine brain revealed by in situ hybridization of brain-specific mRNAs. Mol Brain Res 1, 1–16CrossRefGoogle Scholar
  13. 13.
    Oyler, G. A, Higgins, G A, Hart, R. A, Battenberg, E., Billingstey, M L, Bloom, F. E, and Wilson, M. C (1989) The identification of a novel synaptosoma1 associated protein, SNAP-25, differentially expressed by neuronal populations J Cell Bio1 109, 3039–3052CrossRefGoogle Scholar
  14. 14.
    Geddes, J. W, Hess, E. J., Hart, R A., Kesslak, J. P, Cotman, W, and Wilson, M C (1990) Lesions of hippocampal circuitry define synaptosomal-associated protein 25 (SNAP-25) as a novel presynaptic marker. Neuroscience 38, 515–528PubMedCrossRefGoogle Scholar
  15. 15.
    Hess, E. J., Slater, T M., Wilson, M and Pate-Skene, J H (1992) The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS J Neurosci 12, 4634–4641PubMedGoogle Scholar
  16. 16.
    Catsicas, S., Larhammar, D, Blomqvlst, A, Sanna, P-P, Milner, R.J., and Wilson, M. C. (1991) Expression of a conserved cell-type specific protein in nerve terminals coincides with synaptogenesis. Proc Natl. Acad Sci. USA 88, 785–789PubMedCrossRefGoogle Scholar
  17. 17.
    Risinger, C, Blomqvist, A G., Lundell, I., Lambertsson, A, Nassel, D., Plenbone, V. A., Prodin, L, and Larhammar, D (1993) Evolutionary conservation of synaptosome-associated protein 25 kDa (SNAP-25) shown by Drosophila and Torpedo cDNA clones J Biol Chem. 268, 24,408–24,414PubMedGoogle Scholar
  18. 18.
    Sanna, P-P, Bloom, F E., and Wilson, M. (1991) Dibutyryl-CAMP induces SNAP-25 translocations into the neurites in PC 12 Dev Brain Res. 59, 104–108CrossRefGoogle Scholar
  19. 19.
    Yaswen, P, Stampfer, M., Ghosh, K, and Cohen, J (1993) Effects of sequence of thioated oligonucleotldes on cultured human mammary eplthelial cells Antisense Res. Dev 3, 67–77PubMedGoogle Scholar
  20. 20.
    Stem, C. A. and Cheng, Y-C (1993) Antisense oligonucleotides as therapeutic agents—Is the bullet really magical? Science 261, 1004–1012.CrossRefGoogle Scholar
  21. 21.
    Heilig, M., Engel, J A, and Soderplam, B (1993) c-fos antlsense in the nucleus acumbens blocks the locomotor stimulant action of cocaine Eur J Pharmacol. 236, 339–340PubMedCrossRefGoogle Scholar
  22. 22.
    Wahlestadt, C, Merlo Pich, E., Koob, G. F., Yee, F., and Heilig, M. (1993) Modulation of anxiety and neuropeptide Y-Y1 receptors by antisense oligodeoxy-nucleotldes Science 259, 528–531.CrossRefGoogle Scholar
  23. 23.
    Chiang, M Y., Chan, H, Zounes, M A., Freier, S M, Lima, W F, and Bennett, F (1991) Antisense ohgonucleotldes mhiblt mtercellular-adhesion molecule 1 expression by two distinct mechanisms J Biol Chem 266, 18,162–l8,171.PubMedGoogle Scholar
  24. 24.
    Bennett, F., Condon, T. P, Grimm, S., Chan, H., and Chlang, M. Y. (1994) Inhibition of endothelial cell adhesion molecule expression with antisense olihgonucleotides J Immunol 11,152, 3530–3540Google Scholar
  25. 25.
    Baughman, R W., Huettner, J. E., Jones, K A., and Khan A. A. (1991) Cell culture of neocortex and basal forebrain from postnatal rats, in Culturing Nerve Cells (Banker, G. and Goslm, K, eds), MIT Press, Cambridge, MA, pp. 227–249Google Scholar
  26. 26.
    Caceres, A, Potrebic, S., and Kosik, K. S. (1991) The effect of tau antisense oli-gonucleotides on neurite formation of cultured cerebellar macroneurons J Neurosci 11, 1515–1523PubMedGoogle Scholar
  27. 27.
    Caceres, A, Mautmo, J., and Kosik, K. S. (1992) Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9, 607–618PubMedCrossRefGoogle Scholar
  28. 28.
    Ferreira, A., Kosik, K S., Greengard, P, and Han, H. Q. (1994) Aberrant neurites and synaptic vesicle protein deficiency in synapsin II-depleted neurons. Science 264, 977–979PubMedCrossRefGoogle Scholar
  29. 29.
    Bayever, E, Iversen, P, Smith, L., Spinolo, J., and Zon, G. (1992) Systemic human antisense therapy begins. Antisense Res Devel 2, 109–110Google Scholar
  30. 30.
    Stein, A, Subasinghe, C., Shinozuka, K., and Cohen, J. S. (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides Nucleic Acids Res 16, 3209PubMedCrossRefGoogle Scholar
  31. 31.
    Crooke, S. T. (1992)Therapeutic applications of oligonucleotides Ann Rev Pharmacol Toxicol 32, 329–376.CrossRefGoogle Scholar
  32. 32.
    Gao, W.-Y, Han, F S., Storm, C, Egan, W., and Cheng, Y. C (1992) Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNAse H—implications for antisense technology. Mol Pharmacol 41, 223–229PubMedGoogle Scholar
  33. 33.
    Cazenave, C., Stein, A, Loreau, N., Thuong, N. T., Neckers, L. M., Subashinge, C., Helene, C, Cohen, J.S, and Toulme, J. J. (1989) Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynuclotides. Nucleic Acids Res 17, 4255–4273PubMedCrossRefGoogle Scholar
  34. 34.
    Vu, H. and Hischbein, B. (1991) Internucleotide phosphate sulfurization with tetraethylthiuram disulfide phosphorothioate oligonucleotide synthesis via phosphoramidite chemistry. Tetrahedron Lett 32, 3005–3008CrossRefGoogle Scholar
  35. 35.
    Sawadogo, M. and Van Dyke, M W (1991) A rapid method for the purification of deprotected oligodeoxynucleotides Nucleic Acids Res. 19, 674.PubMedCrossRefGoogle Scholar
  36. 36.
    Sudhof, T. C., Lottspeich, F., Greengard, P., Mehl, E., and Jahn, R. (1987) A synaptic vesicle protein with a new cytoplasmic domain and four transmembrane regions. Science 238, 1142–1144.PubMedCrossRefGoogle Scholar
  37. 37.
    Greene, L A. and Tischler, A S (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor Proc Natl Acad Sci USA 73, 2424–2428PubMedCrossRefGoogle Scholar
  38. 38.
    Tischler, A.S. and Greene, L. A (1978) Morphologic and cytochemical properties of a clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Lab Invest. 39, 77–89PubMedGoogle Scholar
  39. 39.
    Jap Tjoen San, E. R. A., ScmidtMichels, M. H., Spruijt, B. M, Oestreicher, Schotman, P., and Gispen, W. H. (1991) Quantitation of the growth-associated protein B-50/GAP-43 and neurite outgrowth in PC12 cells. J Neurosci Res 29, 149–154PubMedCrossRefGoogle Scholar
  40. 40.
    Burry, R. W. and PerroneBizzozero, N I (1993) Nerve growth factor stimulates GAP-43 expression in PC12 cell clone independently of neurite outgrowth J Neurosci Res 36, 24l–251CrossRefGoogle Scholar
  41. 41.
    Gunning, P W, Landreth, G E, Bothwell, M A, and Shooter, E M (1981) Differential and synergistic actions of nerve growth factor and cyclic AMP in PC12 cells J Cell Biol 89, 240–245PubMedCrossRefGoogle Scholar
  42. 42.
    Rodieck, R W (1973) The Vertebrate Retina Principles of Structure and Function W H Freeman, San FranciscoGoogle Scholar
  43. 43.
    Alvarez-Bolado, G, Lebeau, M Braissant, Wahli, W., and Catsicas, S (1991) Electrical activity regulates the expression of synapse-specific genes during neuronal development Soc Neurosci Abstr 17, 215Google Scholar
  44. 44.
    Hamburger, V and Hamilton, H. L. (1951) A series of normal stages in the development of the chick embryo. J Morphol 88, 49–92CrossRefGoogle Scholar
  45. 45.
    Leonetti, J P, Mechti, N, Degols, G, Gagnor, C, and Lebleu, B (1991) Intracellular distrtbution of micromjected antisense oligonucleotides. Proc Natl Acad Sci USA 88, 2702–2706PubMedCrossRefGoogle Scholar
  46. 46.
    Zamecnik, P, Aghajanian, J, Zamecnik, M, Goodchild, J., and Witman, G (1994) Electron micrographic studies of transport of oligodeoxynucleotides across eukaryotic cell membranes Proc Natl Acad Sci USA 91, 3156–3160PubMedCrossRefGoogle Scholar
  47. 47.
    Reed, J C, Stein, C, Subashinge, S., Haldar, S., Croce, C M., Yum, S, and Cohen, J (1990) Antisense-mediated inhibition of bcl-2 protooncogene expression and leukemic cell growth and survival—comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides Cancer Res 50, 6565–6570PubMedGoogle Scholar
  48. 48.
    Catsicas, S., Catsicas, M., Keyser, K.T., Karten, H. J, Wilson, M C, and Milner, R J (1992) Differential expression of the presynaptic protein SNAP-25 in mammalian retina J Neurosci Res 33, 1–9PubMedCrossRefGoogle Scholar
  49. 49.
    Mandell, J W, Townes-Anderson, E, Czernik, A J, Cameron, R, Greengard, P, and De Camilli, P. (1990) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses Neuron 5, 19–33PubMedCrossRefGoogle Scholar
  50. 50.
    Bratssant, O., Wilson, M. C., Wahli, W., and Catsicas, S. (1990) Expression of presynaptic and cytoskeletal proteins following early target removal in the chick embryo. Soc Neurosci Abstr 16, 42.Google Scholar
  51. 51.
    Catsicas, S, Grenningloh, G., and Merlo Pich, S. E (1994) Nerve-terminal proteins to fuse to learn Trends Neurosci 17, 368–373PubMedCrossRefGoogle Scholar
  52. 52.
    Goslm, K., Schreyer, D. J., Pate Skene, J. H., and Banker, G. (1990) Changes in the distribution of GAP-43 during the development of neuronal polarity J Neurosci 10, 588–602Google Scholar
  53. 53.
    Jap Tjoen San, E R. A., ScmidyMichels, M., Oestreicher, A. B., Gispen, W H, and Schotman, P. (1992) Inhibition of nerve growth factor-induced B-50/GAP-43 expression by antisense oligomers interferes with neurrte outgrowth of PC12 cells Biochem. Biophys. Res Commun 187, 839–846PubMedCrossRefGoogle Scholar
  54. 54.
    Sollner, T, Whiteheart, S W, Brunner, M, Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J. E (1993) SNAP receptors implicated in vesicle targeting and fusion Nature 362, 3l8–324.CrossRefGoogle Scholar
  55. 55.
    De Camilli, P (1993) Exocytosrs goes with a SNAP. Nature 364, 387–388.PubMedCrossRefGoogle Scholar
  56. 56.
    Montecucco, C and Schiavo, G (1994) Mechanism of action of tetanus and botulinum neurotoxins Mol Microbiol 13, 1–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Osen-Sand, A, Staple, J K, Naldi, E., Schiavo, G, Grenningloh, G., Malgaroli, A., Montecucco, C, and Catsicas, S. (1995) Common and distinct SNARES for axonal growth and transmitter release. Soc Neurosci Abst 21, 327Google Scholar
  58. 58.
    Bark, I. C (1993) Structure of the chicken gene for SNAP-25 reveals duplicated exons encoding distinct isoforms of the protein J Mol Biol 233, 67–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Bark, I. C and Wilson, M (1994) Regulated vesicular fusion in neurons snapping together the details Proc Natl Acad Sci USA 91, 462l–4624CrossRefGoogle Scholar
  60. 60.
    Chiasson, B. J., Hooper, M L., Murphy, P. R, and Robertson, H A. (1992) Antisense oligonucleotides elimniates in viva expression of c-fos in mammalian brain Eur J Pharmacol 221, 45l–453Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1996

Authors and Affiliations

  • Marina Catsicas
    • 1
  • Astrid Osen-Sand
    • 1
  • Julie K. Staple
    • 1
  • Kenneth A. Jones
    • 1
  • Guidon Ayala
    • 1
  • Jonathan Knowles
    • 1
  • Gabriele Grenningloh
    • 1
  • Emilio Merlo Pith
    • 1
  • Stefan Catsicas
    • 1
  1. 1.Glaxo Institute for Molecular BiologyGenevaSwitzerland

Personalised recommendations