Antisense Therapy of Hepatitis B Virus Infection

In Vivo Analyses in the Duck Hepatitis B Virus Model
  • Wolf-Bernhard Offensperger
  • Silke Offensperger
  • Hubert E. Blum
Part of the Methods in Molecular Medicine book series (MIMM, volume 1)


Infectious diseases in general and viral infections in particular can be viewed as acquired genetic diseases (1, 2). At the molecular level, clinical signs and symptoms of viral infections are frequently caused by the expression or overexpression of the acquired genes. Based on this basic concept, such acquired genetic diseases should be amenable to treatment by a specific block of gene expression. Gene expression can be blocked at different levels by the following strategtes: sense strategy, antigene strategy, ribozymes, antisense strategy, and interfering peptrdes or proteins (Fig. 1).
Fig. 1.

Principle of gene expression and strategies aimed at block of gene expression (1) sense strategy based on the binding of regulatory proteins, e g., transcription factors, by oligonucleotides, resulting in a block of transcription; (2) antigene strategy based on triple helix formation between oligonucleotides and double-stranded DNA, resulting in a block of transcription; (3) ribozymes resulting in specifically targeted degradation of mRNA, resulting in a block of translation, (4) antisense strategy based on binding of oligonucleotides to mRNA, resulting in a block of translation; (5) functional inactivation of proteins by binding to other proteins or peptides synthesized intracellularly after transduction of the specific coding sequences


Antisense Oligodeoxynucleotides Pekin Duck Duck Hepatitis Antisense Strategy Bovine Papilloma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Anderson, W F. (1992) Human gene therapy. Science 256, 808–813PubMedCrossRefGoogle Scholar
  2. 2.
    Morgan, R A and Anderson, W F (1993) Human gene therapy. Annu Rev Biochem. 62, 191–217PubMedCrossRefGoogle Scholar
  3. 3.
    Agrawal, S (1992) Antisense oligonucleotides as antiviral agents. Trends Biotechnol 10, 281–287CrossRefGoogle Scholar
  4. 4.
    Helene, C (1991) Rational design of sequence-specific oncogene inhibitors based on antisense and antigene oligonucleotides. Eur J. Cancer 27, 1466–1471PubMedCrossRefGoogle Scholar
  5. 5.
    Helene, C and Toulme, J. J (1990) Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochem Biophys Acta 1049, 99–125PubMedGoogle Scholar
  6. 6.
    Uhlmann, E and Peyman, A. (1990) Antisense oligonucleotides: a new therapeutic principle. Chem Rev 90, 544–583CrossRefGoogle Scholar
  7. 7.
    Wickstrom, E (1992) Strategies for administering targeted therapeutic oligo-deoxynucleotides A review. Trends Biotechnol 10, 281–287.PubMedCrossRefGoogle Scholar
  8. 8.
    Calabretta, B. (1991) Inhibition of protooncogene expression by antisense ohgodeoxynucleotides: biological and therapeutic imphcations. Cancer Res 51, 4505–4510.PubMedGoogle Scholar
  9. 9.
    Ma, D. D. F. and le Doan, T (1994) Antisense oligonucleotide therapies: are they the “magic bullets”? Ann Intern Med 120, 161–163.PubMedGoogle Scholar
  10. 10.
    Stem, C A. and Cohen, J S. (1988) Oligodeoxynucleotides as inhibitors of gene expression. a review. Cancer Res 48, 2659–2668Google Scholar
  11. 11.
    Becker, D., Meler, C B. and Herlyn, M (1989) Proliferation of human malignant melanomas is inhibited by antisense ohgodeoxynucleotides targeted against basic fibroblast growth factor EMBO J 8, 3685–3691PubMedGoogle Scholar
  12. 12.
    Harel-Bellan, A., Ferris, D. K., Vinocour, M., Holt, J. T., and Farrar, W. L. (1988) Specific inhibition of c-myc protein biosynthesis using an antisense synthetic deoxyoligonucleotide in human T lymphocytes. J Immunol 140, 243l–2435Google Scholar
  13. 13.
    Holt, J. T., Redner, R L., and Ntenhms, A. W. (1988) An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 promyelocytic cells and induces differentiation. Mel Cell Biol 8, 963–973Google Scholar
  14. 14.
    McManaway, M E., Neckers, L. M., Loke, S. L., Al-Nasser, A A., Redner, R L., Shiramizu, B T., Goldschmidts, W L., Huber, B E., Bhatia, K., and Magrath, I T (1990) Tumour-specific inhibition of lymphoma growth by an antisense oligodeoxynucleotide. Lancet 335, 808–811PubMedCrossRefGoogle Scholar
  15. 15.
    Melam, C., Rivoltini, L., Parmiani, G., Calabretta, B., and Colombo, M P (1991) Inhibition of proliferation by c-myb antisense oligodeoxynucleotides in colon adenocarcmoma cell lines that express c-myb Cancer Res 51, 2897–2901Google Scholar
  16. 16.
    Reed, J C., Stem, C, Subasinghe, C, Haldar, S., Croce, C M., Yum, S., and Cohen, J. (1990) Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate ohgodeoxynucleotides Cancer Res 50, 6565–6570PubMedGoogle Scholar
  17. 17.
    Rivera, R T., Pasion, S. G., Wong, D T., Fet, Y B., and Biswas, D K. (1989) Loss of tumorigenic potential by human lung tumor cells in the presence of antisense RNA specific to the ectopically synthesized alpha subunit of human chorionic gonadotropin J Cell Biol 108, 2423–2434.PubMedCrossRefGoogle Scholar
  18. 18.
    Saison-Behmoaras, T., Tocque, B., Rey, I., Chassignol, M., Thuong, N T., and Helene, C. (1991) Short modified antisense oligonucleotides directed against Ha-ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation EMBOJ 10, 1111–1118.Google Scholar
  19. 19.
    Szczylik, C., Skorskt, T., Nicolaides, N. C., Manzella, L., Malaguarnera, L., Venturelli, D., Gewntz, A. M., and Calabretta, B. (1991) Selective inhibition of leukemia cell proliferation by BCR-ABL antisense oligodeoxynucleotides Science 253, 562–565.PubMedCrossRefGoogle Scholar
  20. 20.
    von Ruden, T and Gilboa, E (1989) Inhibition of human T-cell leukemia virus type I replication in primary human T cells that express antisense RNA J. Virol 63, 677–682PubMedGoogle Scholar
  21. 21.
    Kabanov, A V., Vinogradov, S. V., Ovcharenko, A. V., Krivonos, A V., Melik, N. N. S., Kiselev, V I., and Severm, E. S. (1990) A new class of antivirals. antisense oligonucleotides combined with a hydrophobic substituent effectively inhibit influenza virus reproduction and synthesis of virus-specific proteins in MDCK cells FEBS Lett 259, 327–330.Google Scholar
  22. 22.
    Chang, L J. and Stoltzfus, C M. (1987) Inhibition of Rous sarcoma virus replication by antisense RNA J Virol 61, 92l–924.Google Scholar
  23. 23.
    Zamecnik, P. C. and Stephenson, M. L. (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide Proc Natl Acad Sci USA 75, 280–284PubMedCrossRefGoogle Scholar
  24. 24.
    Agrawal, S., Goodchild, J, Civeira, M P., Thornton, A H., Sarin, P. S., and Zamecnik, P C (1988) Oligodeoxynucleoside phosphoramidates and phos-phorothioates as inihibitors of human immunodeficiency virus Proc Natl Acad Sci USA 85, 7079–7083PubMedCrossRefGoogle Scholar
  25. 25.
    Matsukura, M., Shinozuka, K., Zon, G., Mitsuya, H., Reitz, M., Cohen, J S., and Broder, S (1987) Phosphorothioate analogs of oligodeoxynucleotides inhibitors of replication and cytopathic effects of human immunodeficlency virus. Proc Natl Acad Sci USA 84, 7706–7710PubMedCrossRefGoogle Scholar
  26. 26.
    Renneisen, K., Leserman, L., Matthes, E., Schroder, H C., and Muller, W E (1990) Inhibition of expression of human immunodeficiency virus-l in vitro by antibody-targeted hposomes contaming antisense RNA to the env region. J Biol Chem 265, 16,337–l6,342.PubMedGoogle Scholar
  27. 27.
    Zamecmk, P C., Goodchild, J., Taguchi, Y., and Sarin, P S (1986) Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA Proc Natl Acad Sci USA 83, 4143–4146CrossRefGoogle Scholar
  28. 28.
    Lemaitre, M., Bayard, B., and Lebleu, B (1987) Specific antiviral activity of a poly-lysine-conjugated ohgodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site Proc Natl Acad Sci USA 84, 648–652PubMedCrossRefGoogle Scholar
  29. 29.
    Smith, C C., Aurelian, L., Reddy, M P., Miller, P S., and Ts’o, P O P (1986) Antiviral effect of an oligo (nucleoside methylphosphonate) complementary to the splice Junction of herpes simplex virus type 1 immediate early pre-mRN As 4 and 5 Proc Natl Acad Sci USA 83, 2787–2791.PubMedCrossRefGoogle Scholar
  30. 30.
    Bergman, P., Ustav, M, Moreno-Lopez, J., Vennstroem, B., and Pettersson, U (1986) Rephcation of the bovme papillomavirus type 1 genome, antisense transcripts prevent episomal replication Gene 50, 185–193PubMedCrossRefGoogle Scholar
  31. 31.
    Gupta, K. C (1987) Antisense oligodeoxynucleotides provide insight into mechanism of translation initiation of two Sendai virus mRNAs. J Biol Chem 262, 7492–7496PubMedGoogle Scholar
  32. 32.
    Blum, H. E., Galun, E., von Weizsacker, F., and Wands, J R. (1991) Inhibition of hepatitis B virus by antisense oligodeoxynucleotides (letter). Lancet 337, 1230PubMedCrossRefGoogle Scholar
  33. 33.
    Goodarzi, G., Gross, S C., Tewari, A., and Watabe, K. (1990) Antisense oligodeoxyribonucleotides inhibit the expression of the gene for hepatitis B virus surface antigen J Gen Virol 71, 3021–3025PubMedCrossRefGoogle Scholar
  34. 34.
    Wu, G. Y. and Wu, C. H (1992) Specific inihibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. J Biol Chem 267, 12,436–12,439PubMedGoogle Scholar
  35. 35.
    Wands, J R and Blum, H E (1991) Primary hepatocellular carcmoma N Engl J Med 325, 729–731PubMedCrossRefGoogle Scholar
  36. 36.
    Tiollais, P., Pourcel, C., and DeJean, A (1985) The hepatitis B virus Nature 317, 489–495PubMedCrossRefGoogle Scholar
  37. 37.
    Summers, J., Smolec, J. M., and Snyder, R (1978) A virus similar to hepatitis B virus associated with hepatitis and hepatoma in woodchucks Proc Natl Acad Sci USA 75, 4533–4537PubMedCrossRefGoogle Scholar
  38. 38.
    Marion, P L, Oshiro, L S., Regnery, DC., Scullard, G H., and Robinson, W S (1980) A virus in Beechey ground squirrels that is related to hepatitis B virus of humans Proc Natl Acad Sci USA 77, 2941–2945PubMedCrossRefGoogle Scholar
  39. 39.
    Mason, W S., Seal, G., and Summers, J (1980) Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus J Virol 36, 829–836PubMedGoogle Scholar
  40. 40.
    Sprengel, R., Kaleta, E F., and Will, H (1988) Isolation and characterization of a hepatitis B virus endemic in herons. J Virol 62, 3832–3839.PubMedGoogle Scholar
  41. 41.
    Summers, J W and Mason, W S. (1982) Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA mtermediate Cell 29, 403–415PubMedCrossRefGoogle Scholar
  42. 42.
    Carman, W., Thomas, H., and Domingo, E. (1993) Viral genetic variation: hepatitis B virus as a climcal example Lance, 341, 349–353CrossRefGoogle Scholar
  43. 43.
    Tuttleman, J. S., Pugh, J C and Summers, J W. (1986) In vitro experimental mfection of primary duck hepatocyte cultures with duck hepatitis B virus J Virol. 58, 17–25.PubMedGoogle Scholar
  44. 44.
    Suzuki, S., Lee, B., Luo, W., Tovell, D., Robins, M J., and Tyrrell, D. L. (1988) Inhibition of duck hepatitis B virus replication by purme 2′, 3′-dideoxynucleosides Biochem. Biophys Res Commun 156, 1144–1151PubMedCrossRefGoogle Scholar
  45. 45.
    Fourel, I, Gripon, P., Hantz, O., Cova, L., Lambert, V., Jacquet, C., Watanabe, K., Fox, J., Guillouzo, C., and Trepo, C. (1989) Prolonged duck hepatitis B virus replication in duck hepatocytes cocultivated with rat epithelial cells. a useful system for antiviral testing Hepatology 10, 186–191Google Scholar
  46. 46.
    Civitico, G., Wang, Y Y., Luscombe, C., Bishop, N., TachedJian, G., Gust, I, and Locarnini, S (1990) Antiviral strategies in chronic hepatitis B virus infection II Inhibition of duck hepatitis B virus in vitro using conventional antiviral agents and supercoiled-DNA active compounds. J Mede Virol 31, 90–97CrossRefGoogle Scholar
  47. 47.
    Hirota, K., Sherker, A H., Omata, M., Yokosuka, O., and Okuda, K (1987) Effects of adenme arabmosrde on serum and intrahepatic replicative forms of duck hepatitis B virus in chronic infection Hepatology 7, 24–28.PubMedCrossRefGoogle Scholar
  48. 48.
    Kassianides, C., Hoofnagle, J H., Miller, R. H., Doe, E., Ford, H., Broder, S., and Mitsuya, H (1989) Inhibition of duck hepatitis B virus replication by 2’,3’-dideoxycytidine A potent inhibitor of reverse transcriptase. Gastroenterology 97, 1275–1280.PubMedGoogle Scholar
  49. 49.
    Sherker, A. H., Hirota, K., Omata, M., and Okuda, K. (1986) Foscarnet decreases serum and liver duck hepatitis B virus DNA in chronically infected ducks. Gustroenterology 91, 818–824Google Scholar
  50. 50.
    Iyer, R P., Philips, L. R., Egan, W., Regan, J. B., and Beaucage, S L J (1990) The automated synthesis of sulphur-containing ohgodeoxyribonucleotides using 3H-1,2-benzodithiol-3-one 1,l-dioxide as a sulphur-transfer reagent Org Chem 55, 4693–4698CrossRefGoogle Scholar
  51. 51.
    Leonetti, J. P., Mechti, N., Degols, G., Gagnor, C., and Lebleu, B (1991) Intra-cellular distribution of microinJected antisense oligonucleotides Proc Nutl Acad. Sci USA 88, 2702–2706CrossRefGoogle Scholar
  52. 52.
    Stein, C. A. and Cheng, Y C. (1993) Antisense oligonucleotides as therapeutic agents-is the bullet really magical? Science 261, 1004–1012PubMedCrossRefGoogle Scholar
  53. 53.
    Hanvey, J. C., Peffer, N J., Bisi, J. E., Thomson, S. A., Cadilla, R., Josey, J. A., Ricca, D. J., Hassman, C. F., Bonham, M. A., Au, K. G., et al (1992) Antisense and antigene properties of peptide nucleic acids. Science 258, 1481–1485PubMedCrossRefGoogle Scholar
  54. 54.
    Wagner, R W., Matteucct, M. D., Lewis, J G., Gutterrez, A J., Moulds, C., and Froehler, B C (1993) Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science 260, 1510–1513.PubMedCrossRefGoogle Scholar
  55. 55.
    Duval-Valentin, G., Thuong, N. T., and Helene, C. (1992) Specitic inhibition of transcription by triple helix-forming oligonucleotides. Proc Natl Acad Sci USA 89, 504–508PubMedCrossRefGoogle Scholar
  56. 56.
    Felgner, P L., Gadek, T R., Holm, M., Roman, R, Chart, H W., Wenz, M., Northrop, J P., Ringold, G. M., and Damelsen, M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84, 7413–7417PubMedCrossRefGoogle Scholar
  57. 57.
    Leonetti, J P., Machy, P., Degols, G., Lebleu, B., and Leserman, L (1990) Antibody-targeted hposomes containing oligodeoxyribonucleotides complementary to viral RNA selectively inhibit viral replication. Proc Natl Acad Sci USA 87, 2448–2451PubMedCrossRefGoogle Scholar
  58. 58.
    Liang, T J., Makdisi, W. J., Sun, S., Hasegawa, K., Zhang, Y., Wands, J R., Wu, C H., and Wu, G. Y. (1993) Targeted transfection and expression of hepatitis B viral DNA in human hepatoma cells. J Clin Invest 91, 1241–1246PubMedCrossRefGoogle Scholar
  59. 59.
    Cotten, M., Wagner, E., Zatloukal, K., Phillips, S., Curiel, D. T., and Birnstiel, M L (1992) High-efficiency receptor-mediated delivery of small and large (48 kilobase) gene constructs using the endosome-disruption activity of defective or chemically mactivated adenovirus particles. Proc Natl Acad Sci USA 89, 6094–6098PubMedCrossRefGoogle Scholar
  60. 60.
    Cristiano, R J., Smith, L C., and Woo, S. L. (1993) Hepatic gene therapy: adenovirus enhancement of receptor-mediated gene delivery and expression in primary hepatocytes. Proc. Natl Acad Sci USA 90, 2122–2126PubMedCrossRefGoogle Scholar
  61. 61.
    Wagner, E., Zenke, M., Cotten, M., Beug, H., and Birnstiel, M. L. (1990) Trans-ferrm-polycation coqugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA 87, 3410–3414PubMedCrossRefGoogle Scholar
  62. 62.
    Kay, M A., Baley, P., Rothenberg, S., Leland, F., Fleming, L., Ponder, K. P., Liu, T., Finegold, M., Darlington, G., Pokorny, W., and Woo, S. L C (1992) Expression of human alpha 1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes. Proc Natl. Acad. SCi USA 89, 89–93.PubMedCrossRefGoogle Scholar
  63. 63.
    Ledley, F D., Darlington, G. J., Hahn, T., and Woo, S L. (1987) Retroviral gene transfer into primary hepatocytes imphcations for genetic therapy of liver-spe-cific functions. Proc. Natl Acad. Sci USA 84, 5335–5339.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1996

Authors and Affiliations

  • Wolf-Bernhard Offensperger
    • 1
  • Silke Offensperger
    • 1
  • Hubert E. Blum
    • 2
  1. 1.Department of MedicineUniversity of FreiburgGermany
  2. 2.Department of MedicineUniversity HospitalZurichSwitzerland

Personalised recommendations