History of Antisense Oligonucleotides

  • Paul C. Zamecnik
Part of the Methods in Molecular Medicine book series (MIMM, volume 1)


Biological science is a rapidly flowing experimental stream, at times encountering a dam that impedes further progress. At such a pomt, a single crack may induce a major breakthrough Discovery of the double helical structure of DNA in 1953 (1) caused such an event, with flooding of new information into the area now known as molecular biology.


Synthetic Oligonucleotide Rous Sarcoma Virus Oligonucleotide Hybridization Double Helical Structure Hybridization Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Watson, J. D. and Crick, F H C (1953) Molecular structure of nucleic acids a structure for deoxyribonucleic acids. Nature (Lond) 171, 737–738CrossRefGoogle Scholar
  2. 2.
    Siekevitz, P and Zamecmk, P C (1951) In vitro incorporation of 1-C14-DL-alanine into proteins of rat liver granular fractions Fed Proc 10, 246 (abstract).Google Scholar
  3. 3.
    Zamecnik, P. C. and Keller, E B. (1954) Relationship between phosphate energy donors and incorporation of labeled amino acids into proteins. J. Biol. Chem 209, 337–354PubMedGoogle Scholar
  4. 4.
    Zamecmk, P C.(1979) Historical aspects of protein synthesis Ann NY Acad Sci 325, 269–301.CrossRefGoogle Scholar
  5. 5.
    Brachet, J (1950) Chemical Embryology Interscience, New York.Google Scholar
  6. 6.
    Caspersson, T. O (1950) Growth and Cell Function Norton, New York.Google Scholar
  7. 7.
    Keller, E. B, Zamecnik, P C, and Loftfield, R B (1954) The role of microsomes in the incorporation of amino acids into proteins. J Histochem Cytochem 2, 378–386PubMedGoogle Scholar
  8. 8.
    Zamecnik, P C, Hoagland, M B., and Stephenson, M. L. (1957) Synthesis of protein in the cell nucleus, NY Acad Sci V, 273–274.Google Scholar
  9. 9.
    Zamecnik, P C, Stephenson, M L, Scott, J F, and Hoagland, M B (1957) Incorporation of C14-ATP into soluble RNA isolated from 105,000 x g supernatant of rat liver. Fed Proc 16, 275Google Scholar
  10. 10.
    Zamecnik, P C, Stephenson, M L and Hecht, L. I (1958) Intermediate reactions in amino acid incorporation Proc Natl Acad Sci USA 44, 73–78PubMedCrossRefGoogle Scholar
  11. 11.
    Hoagland, M. B, Stephenson, M L, Scott, J. F., Hecht, L. I, and Zamecnik, P C (1958) A soluble ribonucleic acid intermediate in protein synthesis J Biol Chem 231, 241–256.PubMedGoogle Scholar
  12. 12.
    Hoagland, M B, Zamecnik, P C, and Stephenson, M. L. (1959) A hypothesis concerning the roles of particulate and soluble ribonucleic acids in protein synthesis, in A Symposium on Molecular Biology (Zu-kle, R E, ed), University of Chicago Press, Chicago, IL, pp 105–114Google Scholar
  13. 13.
    Nirenberg, M W. and Matthaei, J H (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides Proc. Natl Acad SCi USA 47, 1588–1602.PubMedGoogle Scholar
  14. 14.
    Nishimura, S., Jones, D S, and Khorana, H G (1965) The in vitro synthesis of a copolypeptide containing two amino acids in alternating sequence dependent upon a DNA-like polymer containing two nucleotides in alternating sequence J Mol Biol. 13, 302–324.PubMedCrossRefGoogle Scholar
  15. 15.
    Allen, D W and Zamecnik, P C. (1962) The effect of puromycin on rabbit reticu-locyte ribosome Biochem Biophys Acta. 55, 865–874.PubMedCrossRefGoogle Scholar
  16. 16.
    Zamecnik, P C and Stephenson, M L. (1978) Inhibition of Rous sarcoma virus replication and transformation by a specific oligodeoxynucleotide Proc Natl Acad. Sci. USA 75, 280–284.PubMedCrossRefGoogle Scholar
  17. 17.
    Helene, C (1993) Control of gene expression by triple-helix-forming oligonucle-otides the antigene strategy, in Antisense Research and Applications (Crooke, S. T. and Lebleu, B., eds.), CRC, Boca Raton, FL, pp. 375–385.Google Scholar
  18. 18.
    Maher, L. J., Dervan, P. B., and Wold, B. (1992) Analysis of promoter-specific repression by triplehelical DNA complexes in a eukaryotic cell-free transcription system. Biochemistry 31, 70–81.PubMedCrossRefGoogle Scholar
  19. 19.
    Temsamani, J, Metelev, V., Levma, A., Agrawal, S, and Zamecnik, P. (1994) Inhibition of in vitro transcription by ohgodeoxynucleotides. Antisense Res Devel. 4, 279–284.Google Scholar
  20. 20.
    Stephenson, M L and Zamecnik, P. C. (1978) Inhibition of Rous sarcoma viral RNA translation by a specific ohgodeoxynucleotide Proc Natl Acad Sci USA 75, 285–288PubMedCrossRefGoogle Scholar
  21. 21.
    Zamecnik, P C, Goodchild, J, Taguchi, Y, and Sarm, P S (1986) Inhibition of replication and expression of human T-cell lymphotroptc virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA Proc Natl Acad Sci USA 83, 4143–4146PubMedCrossRefGoogle Scholar
  22. 22.
    Plesner, P., Goodchild, J, Kalckar, H, and Zamecnik, P. C. (1987) Oligonucleotides with rapid turnover of the phosphate groups occur endogenously in eukaryotic cells Proc Natl Acad Sci USA 84, 1936–1939.CrossRefGoogle Scholar
  23. 23.
    Inouye, M (1988) Antisense RNA. its functions and applications in gene regulation-a review. Gene 72, 25–34PubMedCrossRefGoogle Scholar
  24. 24.
    Kimelman, D (1992) Regulation of eukaryotic gene expression by natural antisense transcripts, in Gene Regulations Biology of Antisense RNA and DNA (Erickson, P and Izant, J G, eds), Raven, New York, pp 1–10Google Scholar
  25. 25.
    Belikova, A M, Zarytova, V F, and Grineva, N. I (1967) Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamme and nitrogen mustard residues. Tetrahedron Lett 37, 3557–3562PubMedCrossRefGoogle Scholar
  26. 26.
    Miller, P S., Braiterman, I T, and Tso, P O. P. (1977) Effects of a trinucleotide ethylphosphtriester, Gmp(Et)Gmp(Et)U, on mammalian cells in culture. Biochemistry 16, 1988–1996PubMedCrossRefGoogle Scholar
  27. 27.
    Paterson, B. M., Roberts, B E, and Kuff, E. L (1977) Structural gene tdentification and mapping by DNA-mRNA hybrid-arrested cell-free translation Proc Natl Acad Sci USA 74, 4370–4374.PubMedCrossRefGoogle Scholar
  28. 28.
    Hastie, N. D. and Held, W. A (1978) Analyses of mRNA populations by cDNA mRNA hybrid-mediated inhibition of cell-free protein synthesis Proc Natl Acad Sci USA 75, 1217–1221.PubMedCrossRefGoogle Scholar
  29. 29.
    van der Krol, A. R, Stuitje, A. R., and Mol, J N. M (1991) Modulation of floral pigmentation by antisense technology, in Antisense Nucleic Acids and Proteins (Mol, J M N. and van der Krol, A R, eds), Marcel Dekker, New York, pp 125–140Google Scholar
  30. 30.
    Zamecnik, P., Aghajanian, J., Zamecnik, M., Goodchild, J., and Witman, G (1994) Electron micrographic studies of transport of oligodeoxynucleotides across eukaryotic cell membranes. Proc Natl Acad Sci USA 91, 3156–3160PubMedCrossRefGoogle Scholar
  31. 31.
    Temsamani, J., Kubert, M, Tang, J, Padmapriya, A, and Agrawal, S (1994) Cellular uptake of oligodeoxynucleotides and their analogs Antisense Res Devel 4, 35–42Google Scholar
  32. 32.
    Agrawal, S, Temsamani, J, and Tang, J. Y (1991) Pharmacokmetics, bio-distrtbution and stability of oligodeoxynucleotide phosphorothioates in mice Proc Natl Acad Sci USA 88, 7595–7599PubMedCrossRefGoogle Scholar
  33. 33.
    Anderson, W F. (1992) Human gene therapy. Science 256, 808–813.PubMedCrossRefGoogle Scholar
  34. 34.
    Khorana, H G, Buchi, H., Ghosh, H., Gupta, N, Jacob, T M., Kossel, H., Mor-gan, R., Narang, S. A, Ohtsuka, E, and Wells, R D. (1966) Polynucleotide syn-thesis and the genetic code Cold Spring Harbor Symp Quant Biol 31, 39–49PubMedGoogle Scholar
  35. 35.
    Holley, K W, Apgar, J, Everett, G A., Madison J T., Marqursee, M, Merrill, S. H, Penswick, J. R., and Zamir, A (1965) Structure of a ribonucleic acid Sczence 147, 1462–1465CrossRefGoogle Scholar
  36. 36.
    Monier, R, Stephenson, M L., and Zamecnik, P. C (1960) The preparation and some properties of a low molecular weight ribonucleic acid from baker’s yeast Biochem Biophys Acta 43, 1–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Zachau, H. G, Dutting, D, Feldmann, H., Melchers, F, and Karan, W. (1966) Serine specific transfer ribonucleic acids XIV. Comparrson of nucleotide sequence and secondary structure models Cold Spring Harbor Symp Quant Biol 31, 417–424PubMedGoogle Scholar
  38. 38.
    Raj Bhandary, U. L, Stuart, A, Faulkner, R. D., Chang, S H., and Khorana, H. G (1966) Nucleotide sequence studies on yeast phenylalanyl sRNA Cold Spring Harbor Symp Quant Biol 31, 425–434Google Scholar
  39. 39.
    Ingram, V. M and Sjoquist, J A. (1963) Studies on the structure of purified alanine and valine transfer RNA from yeast Cold Spring Harbor Quant Biol 28, 133–138Google Scholar
  40. 40.
    Temin, H M and Mizutani, S (1970) RNA-dependent DNA polymerase in viri-ons of Rous sarcoma virus Nature 226, 121l–l213CrossRefGoogle Scholar
  41. 41.
    Baltimore, D (1970) Viral RNA-dependent DNA polymerase Nature (Lond) 226, 1209–1210CrossRefGoogle Scholar
  42. 42.
    Sanger, F and Coulsen, A R. (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase J Mol Biol 94, 441–448.PubMedCrossRefGoogle Scholar
  43. 43.
    Wickstrom, E (1986) Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 13, 97–102.PubMedCrossRefGoogle Scholar
  44. 44.
    Walder, R W and Walder, J A (1988) Role of RNase H in hybrid-arrested translation by antisense oligonucleotides in current commuincations, in Molecular Biology Anttsense RNA and DNA (Melton, D. A, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 35–40.Google Scholar
  45. 45.
    Stephenson, M L., Scott, J F, and Zamecnik, P. C (1973) Evidence that the polyladenylic acid segment of RNA of avian myeloblastosis virus is located at the “35s” 31-OH terminus Btochem Biophys Res Commun 55, 8–16CrossRefGoogle Scholar
  46. 46.
    Maxam, A M and Gilbert, W. (1977) A new method of sequencing DNA. Proc Natl Acad Sei USA 74, 560–564.CrossRefGoogle Scholar
  47. 47.
    Haseltine, W. A, Maxam, A. M., and Gilbert, W (1977) Rous sarcoma virus is terminally redundant the 5′ sequence Proc Natl Acad SCI. USA 74, 989–993PubMedCrossRefGoogle Scholar
  48. 48.
    Schwartz, D, Zamecnik, P C., and Weith, H. L (1977) Rous sarcoma virus is terminally redundant: the 3′ sequence Proc. Natl. Acad Sci. USA 74, 994–998PubMedCrossRefGoogle Scholar
  49. 49.
    Pitha, P., and Pitha, J. (1980) Polynucleotide analogs as inhibitors of DNA and RNA polymerases, in International Encyclopedta of Pharmacology and Therapetics, Section 103 Inhibitors of DNA and RNA Polymeruses (Sarin, P S. and Gallo, R. C, eds.), Pergamon, New York, pp 235–247Google Scholar
  50. 50.
    Zamecnik, P. C. and Stephenson, M. L. (1969) Nucleotide pyrophosphate compounds related to the first step in protein synthesis, in The Role of Nucleotides for the Function and Conformation of Enzymes Alfred Benzon Symposium I (Kalckar, H. M, Klenow, H, Munch-Petersen, A., Ottesen, M., and Thaysen, J. H., eds), Munksgaard, Copenhagen, pp 276–291.Google Scholar
  51. 51.
    Sanger, F, Nicklens, S, and Coulsen, A R (1977) DNA sequencing with chamterminating inhibitors Proc Natl Acad. Sci USA 74, 5463–5467.PubMedCrossRefGoogle Scholar
  52. 52.
    Letsinger, R L. and Lunsford, W B (1976) Synthesis of thymidine oligonucleotides by phosphate triester intermediates J Am Chem Soc 98, 3655–3661PubMedCrossRefGoogle Scholar
  53. 53.
    Caruthers, M H. (1985) Gene synthesis machines: DNA chemistry and its uses Science 230, 281–285PubMedCrossRefGoogle Scholar
  54. 54.
    Agrawal, S, Mayrand, S H, Zamecnik, P C, and Pederson T. (1990) Site-specific excision from RNA by RNase H and mixed phosphate backbone oligodeoxynucleotides. Proc Natl Acad Sci USA 87, 1401–1405PubMedCrossRefGoogle Scholar
  55. 55.
    Metelev, V, Lisztewicz, J, and Agrawal, S. (1994) Study of antisense oligonucleotide phosphorothioates containing segments of oligodeoxynucleotides and 2−0-methyl oligoribonucleotides. Bioorg Med Chem Lett 4, 2929–2934CrossRefGoogle Scholar
  56. 56.
    Stein, C A. and Krieg, A. M. (1994) Editorial. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides Antisense Res Devel 4, 67–69Google Scholar
  57. 57.
    Tang, J. Y, Temsamam, J, and Agrawal, S. (1993) Self-stabilized antisense oligonucleotide phosphorothioates. properties and anti-HIV activity Nucleic Acids Res 21(11), 2729–2735Google Scholar
  58. 58.
    Buckheit, R W., Jr, Roberson, J L, Lackman-Smith, C., Wyatt, J R, Vickers, T A, and Ecker, D J (1994) Potent and specific inhibition of HIV envelope-mediated cell fusion and virus binding by G-quartet-forming oligonucleotide (Isis-5320) AIDS Res Hum Retrovir l0(11), 1497–1506CrossRefGoogle Scholar
  59. 59.
    Kandtmalla, E R. and Agrawal, S (1995) Single strand targeted triplex-formation Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides Nucleic Acids Res 23, 1068–1074.CrossRefGoogle Scholar
  60. 60.
    Zon, G (1993) Hzstory of Antisense Drug Discovery In Antisense Research and Applications (Crooke, S. T and Lebleu, B., eds), CRC, Boca Raton, FL, PP 1–5Google Scholar
  61. 61.
    Lisziewtcz, J., Sun, D., Metelev, V, Zamecnik, P., Gallo, R. C., and Agrawal, S (1993) Long-term treatment of human immunodeficiency virus-infected cells with antisense oligonucleotide phosphorothioates. Proc Natl Acad Sci USA 90, 3860–3864CrossRefGoogle Scholar
  62. 62.
    Leiter, J M, Agrawal, S, Palese, P., and Zamecnik, P. C. (1990) Inhibition of influenza virus replication by phosphorothtoate oligodeoxynucleotides Proc Natl Acad Sci USA 87, 3430–3434PubMedCrossRefGoogle Scholar
  63. 63.
    Zamecnik, P C, Agrawal, S, and Palese, P, unpublished dataGoogle Scholar
  64. 64.
    Rapaport, E, Misiura, K, Agrawal, S., and Zamecnik, P. C. (1992) Antimalarial activities of oligodeoxynucleotide phosphorothioates in chloroqume-resistant Plasmodrum falciparum Proc Natl Acad Sci USA 89, 8577–8580CrossRefGoogle Scholar
  65. 65.
    Dluzewski, A R, Mitchell, G H, Fryer, P R., Griffiths, S., Wilson, R J M, and Gratzer, W. B. (1992) Origins of the parasitophorous vacuole membrane of the malaria parasite, Plasmodium falciparum, in human red blood cells. J Cell Sci 102, 527–532PubMedGoogle Scholar
  66. 66.
    Zamecnik, P C, Rapaport, E, Metelev, V, and Barker, R (1996) Inhibition of replication of drug resistant P. fahparum in vitro by specific anttsense phosphorothioate oligodeoxynucleottdes, in Antisense Oligodeoxynucleotides From Technology to Therapy (Schlingenstepen, K H., Schlingensrepen, R, and Brysch, W, eds.), Blackwell International/Blackwell Wissenschaft, Berlin, in pressGoogle Scholar
  67. 67.
    Barker, R H., Jr., Metelev, V., Rapaport, E., and Zamecnik, P (1996) Inhibition of Plasmodium falciparum malaria using antisense oligodeoxynucleotrdes Proc Natl Acad SCi USA, in press.Google Scholar
  68. 68.
    Crooke, S. J. (1994) Editorial. Progress in evaluation of the potential of antisense technology. Antisense Res Devel 4, 145–146.Google Scholar
  69. 69.
    Hawkins, J W (1995) Editorial Oligonucleotide therapeutics: coming’ round the clubhouse turn Antisense Res Devel. 5, 1Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1996

Authors and Affiliations

  • Paul C. Zamecnik
    • 1
  1. 1.Worcester Foundation for Biomedical ResearchShrewsbury

Personalised recommendations