Skip to main content

Electroporation-Mediated Gene Transfer into Hepatocytes

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 48))

Abstract

The study of gene expression regulation relies on the introduction of foreign DNA into eukaryotic cells. A wide variety of DNA-transfer procedures have been developed that utilize retroviruses (1), polycations (2), liposomes (3), chromosomes (4), reconstituted viral envelopes (5) and other chemical reagents, such as calcium phosphate (6), DEAE-dextran (7), and lipopolyamines (8). DNA also can be transferred into cells by physical means, such as microinjection (9), laser beams (10), and electroporation (11). However, none of these methods work with high efficiency on every cell type, whether freshly isolated cells or established cell lines. Some of these techniques, such as microinjection and laser-mediated transfection, require sophisticated apparatus and are technically difficult, whereas others, such as protoplast fusion, retroviral vectors, and liposome fusion, require time-consuming biochemical manipulations. Electroporation, which circumvents most of these problems, has emerged as an effective tool for the transfection of eukaryotic cells in suspensions (for a review, see ref. 12).

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cone, R. D., and Mulligan, R. C. (1984) High efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc. Natl. Acad. Sci. USA 81, 6349–6353.

    Article  PubMed  CAS  Google Scholar 

  2. Bond, V. C., and Wold, B. (1987) Poly-L-ornithine-mediated transformation of mammalian cells. Mol. Cell. Biol. 7, 2286–2293.

    PubMed  CAS  Google Scholar 

  3. Schaeffer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Liposomes as gene carriers: efficient transformation of mouse L cells by thymidine kinase gene. Science 215, 166–168.

    Article  Google Scholar 

  4. Minden, M. D., Gusella, J. F., and Housman, D. (1984) Chromosome-mediated transfer of the malignant phenotype by acute myelogenous leukemic cells. Blood 64, 842–846.

    PubMed  CAS  Google Scholar 

  5. Schaffner, W. (1980) Direct transfer of cloned genes from bacteria to mammalian cells. Proc. Natl. Acad. Sci. USA 77, 2163–2167.

    Article  PubMed  CAS  Google Scholar 

  6. Graham, F. L., and Van Der Erb, A. J. (1973) Transformation of rat cells by DNA of human adenovirus 5. Virology 52, 456–467.

    Article  PubMed  CAS  Google Scholar 

  7. McCutchan, J. H., and Pagano, J. S. (1968) Enhancement of the infectivity of simian virus 40 deoxyribonucleic acid with diethylaminoethyl-dextran. J. Natl. Cancer. Inst. 41, 351–357.

    PubMed  CAS  Google Scholar 

  8. Behr, J. P., Demeneix, B., Loeffler, J. P., and Perez-Mutul, J. (1989) Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA. Proc. Natl. Acad. Sci. USA 86, 6982–6986.

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto, F., Furusawa, W., Furusawa, I., and Obinata, M. (1982) A new efficient technique for mechanically introducing foreign DNA into the nuclei of cultured cells. Exp. Cell Res. 142, 79–84.

    Article  PubMed  CAS  Google Scholar 

  10. Kurata, S., Tsukakoshi, M., Kasuyu, T., and Yakawa, Y. (1986) The laser method for efficient introduction of foreign DNA into cultured cells. Exp. Cell Res. 162, 372–378.

    Article  PubMed  CAS  Google Scholar 

  11. Wong, T., and Neumann, E. (1982) Electric field mediated gene transfer. Biochem. Biophys. Res. Commun. 107, 584–587.

    Article  PubMed  CAS  Google Scholar 

  12. Satyabhama, S., and Epstein, A. L. (1988) Laboratory methods. Short-term efficient expression of transfected DNA in human hematopoietic cells by electroporation: definition of parameters and use of chemical stimulators. DNA 7, 203–209.

    Article  PubMed  CAS  Google Scholar 

  13. Parker Ponder, K., Dunbar, R. P., Wilson, D. R., Darlington, G. J., and Woo, S. L. C. (1991) Evaluation of relative promoter strength in primary hepatocytes using optimized lipofection. Hum. Gene Ther. 2, 41–52.

    Article  Google Scholar 

  14. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  15. Pagès, G., Rouayrenc, J. F., Rossi, V., Le Cam, G., Mariller, M., Szpirer, J., Szpirer, C., Levan, G., and Le Cam, A. (1990) Primary structure and assignment to chromosome 6 of three closely related rat genes which encode serine protease inhibitors expressed in liver. Gene 94, 273–282.

    Article  PubMed  Google Scholar 

  16. Dente, L., Cesarini, G., and Cortese, R. (1983) pEMBL: a new family of single stranded plasmids. Nucleic Acids Res. 11, 1645–1655.

    Article  PubMed  CAS  Google Scholar 

  17. Luckow, B. and Schütz, G. (1987) CAT constructions with multiple unique restriction sites for the functional analysis of eukaryotic promoters and regulatory elements. Nucleic Acids Res. 15, 5490.

    Article  PubMed  CAS  Google Scholar 

  18. Pierce, J. W., Leonardo, M., and Baltimore, D. (1988) Oligonucleotide that binds nuclear factor NF-κB acts as a lymphoid-specific and inducible enhancer element. Proc. Natl. Acad. Sci. USA 85, 1482–1486.

    Article  PubMed  CAS  Google Scholar 

  19. Mercer, E. H., Hoyle, G. W., Kapur, R. P., Brinster, R. L., and Palmiter, R. D. (1991) The dopamine β-hydroxylase gene promoter directs expression of E. coli LacZ to sympathetic and other neurons in adult transgenic mice. Neuron. 7, 703–716.

    Article  PubMed  CAS  Google Scholar 

  20. Pothier, F., Ouellet, M., Julien, J. P., and Guérin, S. L. (1992) An improved CAT assay for promoter analysis in either transgenic mice or tissue culture cells. DNA and Cell Biol. 11, 83–90.

    Article  CAS  Google Scholar 

  21. Paquereau, L. and Le Cam, A. (1992) Electroporation-mediated gene transfer into hepatocytes; preservation of a growth hormone response. Anal. Biochem. 204, 147–151.

    Article  PubMed  CAS  Google Scholar 

  22. Paquereau, L., Vilarem, M. J., Rossi, V., Rouayrenc, J. F., and Le Cam, A. (1992) Regulation of two rat serine protease inhibitor gene promoters by somatotropin and glucocorticoids. Study with intact hepatocytes and cell-free systems. Eur. J. Biochem. 209, 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  23. Le Cam, A., Pantescu, V., Paquereau, L., Legraverend, C., Fauconnier, G., and Asins, G. (1994) cis-Acting elements controlling transcription from rat serine protease inhibitor 2.1 gene promoter. Characterization of two growth hormone response sites and a dominant purine-rich element. J. Biol. Chem. 269, 21,532–21,539.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Le Cam, A. (1995). Electroporation-Mediated Gene Transfer into Hepatocytes. In: Nickoloff, J.A. (eds) Animal Cell Electroporation and Electrofusion Protocols. Methods in Molecular Biology, vol 48. Humana Press. https://doi.org/10.1385/0-89603-304-X:141

Download citation

  • DOI: https://doi.org/10.1385/0-89603-304-X:141

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-304-7

  • Online ISBN: 978-1-59259-535-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics